YogiPWD

Analysis of Columns in ULS strength check

 Analysis of Columns in ULS strength check



1.       For cross section subjected the pure longitudinal compression the compressive strain in concrete is limited to εc2.

2.       For cross section subjected to axial compressive force and bending moment where the cross section is not fully in compression and neutral axis lies within the section the strain at the most compressed face shall be taken as εcu2 with parabolic rectangular – stress strain diagram.

3.       For cross section subjected to axial compression and bending moment and the neutral axis lies out side the section the strain at the out most fiber shall be reduced maintaining the stress at a distance of (1- εc2/ εcu2)h  from the most compressed force as εc2.

The particular case arrives when the columns suffers only compressive strain and no tensile strain is developed. The strain at the highly compressed face is .0035-0.75 times the strain at the least compressive face.

In this case column extreme fiber shall ne be allowed to reach a strain of .0035 unless the other face strain is zero.

For a columns.

                 $$N={{f_{av}bx+f'{A'_s}-{f_s}{A_s}-(1)}}$$

Taking moments about center

                   $$M_{rd}={\beta_1f_{cd}bx_u}\left({{h\over 2} - \beta_2 x}\right) + \sum{f'_s A'_s \left({h\over 2} - d' \right)} + \sum{f_s A_s \left({h\over 2} - d \right)}$$

Step 1:          Assume neutral axis 

Step 2:          Determine the strain in steel and stress corresponding to assumed neutral axis


$${f_c}={f_{cd}}{\left(1-{\left(1-{{\epsilon_c}\over {\epsilon_c}}\right)}^2\right)}$$

Step 3:          Substitute in equation 1 and arrive at the value of

Step 4:          Estimate the moment capacity and ensure it is greater than M applied.

Step 5:          If it does not satisfy change the value of and next trial can be started.

or 

Use following VBA function code to calculate iterative Neutral axis automatically which fulfills the criteria of 

C + T = P

Where C = force in Compression above neutral axis

            T = force in Tension above neutral axis

            P = Axial force in column

For Circular Pier

Public Function xulc(D, cov, dia, N, Fcd, fyd, pu)

Dim min As Double

Dim max As Double

Dim mid As Double

min = 1

max = 12 * D

abc:

mid = (min + max) / 2

If (pulc(D, cov, dia, N, Fcd, fyd, mid) > pu) Then

max = mid

Else

min = mid

End If

If ((Application.Round(pulc(D, cov, dia, N, Fcd, fyd, mid), 5)) = Application.Round(pu, 5)) Then

xulc = mid

GoTo enda

Else:

GoTo abc

enda:

End If

End Function

For Rectangular Pier

Public Function xu(b, D, cov, dia, nb, nd, Fcd, fyd, spacd, pu)

Dim min As Double

Dim max As Double

Dim mid As Double

min = 1

max = 12 * D

abc:

mid = (min + max) / 2

If (pua(b, D, cov, dia, nb, nd, Fcd, fyd, spacd, mid) > pu) Then

max = mid

Else

min = mid

End If

If ((Application.Round(pua(b, D, cov, dia, nb, nd, Fcd, fyd, spacd, mid), -1)) = Application.Round(pu, -1)) Then

xu = mid

GoTo enda

Else:

GoTo abc

enda:

End If

End Function

Biaxial Bending

Step 1:          Design the column independently in each direction.  

Step 2:          If the column satisfies both the equation 8.1 and 8.2 of IRC 112: 2011 then no further check is necessary.

Step 3:          If equations are not satisfied then Biaxial bending to be considered and Equ. 8.3 of IRC 112: 2011 to be satisfied. 

Worked Example Reinforced concrete pier Biaxial bending

RCC pier of size = 1800 x 1500 mm 

Reinforcement = 34 Nos of 32 mm dia

P =17300 KN axial load

about major axis = 8000  KNm 

about minor axis 6000 KNm  

Grade of concrete = M60 and 

Grade of steel  = Fe 500

 

Section Bars
B = 1800 mm 18
D = 1500 mm 16

ω=Asfy d/(Acfc d)

Pt/Fc k

0.161 0.017

Ac (mm2)

RH
2,672,656 70.00%

LOAD COMB=

ULS
Axial Load Pu (kN) = 17300.0

MoEd Current axis (kN.m) =

6000.0

MoEd traffic axis (kN.m) =

8000.0

φefy=φ(∞,t0)(MoEqpy/MoEdy)=

0.00

φefz=φ(∞,t0)(MoEqpz/MoEdz)=

0.11

A Y=1/(1+0.2φefy)=

1.00

A Z=1/(1+0.2φefz)=

0.98

n = N ED / (A c f cd)=

0.235

λlim Y =20 A B C /sqrt(n)=

33.25

Slander Ratio λ y =

4.4

λ lim z =20 A B C /sqrt(n)=

32.53

Slender Ratio λ z =

5.3

n u = 1 + ω=

1.161

K r=(n u - n ) / ( n u - n bal )=

1.217

(1/r0)z=εyd/(0.45 dz)=

3.7E-06

βz=0.35+fck/200-λ/150=

0.615

Kφz=1+βz φef=

1.068

(1/r)z=K r Kφz (1/r0)z=

4.8E-06

e2z=(1/r) (le2)/c=

2.57

M2z=Ned e2z=

0.00

(1/r0)y=εyd/(0.45 dy)=

3.1E-06

βy=0.35+fck/200-λ/150=

0.620

Kφy=1+βy φef=

1.000

(1/r)y=K r Kφy (1/r0)y=

3.8E-06

e2y=(1/r) (le2)/c=

2.02

M2y=Ned e2y=

0.00

Xuz =

528

XuY =

641

MEdz (kN.m) =

6000

MEdy (kN.m) =

8000

MuZ1 (kN.m) =

16696

MuY1 (kN.m) =

19939

Pu / Puz =

1.0001

α =

1.11

(MY/MY1)α+ (MZ/MZ1)α =

0.68
OK

Important VBA codes

Axial Load Capacity for given Neutral axis position

For Circular Pier

Public Function pulc(D, cov, dia, N, Fcd, fyd, i)
Dim j As Double
Dim force As Double
Dim pua As Double
Dim ef As Double
Dim stress As Double
Dim strain As Double
Dim y As Double
Dim mo As Double
Dim moa As Double
Dim mua As Double

strain = 0
stress = 0
force = 0
For j = 1 To N
y = D / 2 - ((D / 2 - cov) * Cos(360 / N * (j - 1) * 3.14159 / 180))
strain = 0.0035 * (1 - y / i)
If strain > 0 Then
stress = Application.min((strain * 200000), (fyd))
Else
stress = Application.max((strain * 200000), (-fyd))
End If
force = stress * 3.1415 / 4 * dia ^ 2
mo = force * (D / 2 - y)
ef = force + ef
moa = mo + moa
Next j
pua = (betac1(i / D, D, Fcd) * Fcd * area(i, D) + ef) / 1000
pulc = pua
End Function

For Rectangular Pier

Public Function pua(b, D, cov, dia, nb, nd, Fcd, fyd, spacd, i)
Dim j As Double
Dim force As Double
Dim ef As Double
Dim stress As Double
Dim strain As Double
Dim y As Double
strain = 0
stress = 0
force = 0
For j = 1 To (nd + 2)
y = cov + (j - 1) * spacd
strain = 0.0035 * (1 - y / i)
If strain > 0 Then
stress = Application.min((strain * 200000), (fyd))
Else
stress = Application.max((strain * 200000), (-fyd))
End If
If j = 1 Then
force = 3.14159 / 4 * dia ^ 2 * (nb + 2) * stress
Else
If j = (nd + 2) Then
force = 3.14159 / 4 * dia ^ 2 * (nb + 2) * stress
Else
force = 3.14159 / 4 * dia ^ 2 * 2 * stress
End If
End If
ef = force + ef
Next j
pua = (beta1(D, Fcd, i / D) * Fcd * b * Application.min(i, D) + ef) / 1000
End Function

Post a Comment

0 Comments