YogiPWD

Civil Engineering Formulas and Handbook

Under Progress.........

Civil Engineering Formulas and Handbook

 



Section 1) Surveying

Traverse Surveying

 Correction For Sag $$ {C_s} = {{{w^2}{l^3}}\over {24.P^2}} $$ Note:-sag correction is subtractive

Where 

w = weight of tape per meter

l= distance between supports

P = Applied Tension

Correction For Tension $$ {C_p} = {{(P-{P_0})l}\over AE} $$

P0 is tension for which the tape is standardized

A = Cross sectional area

E = Modulus of elasticity of tape material

Correction due to Temperature $${C_T} = L{\alpha}({T_m}-{T_0})$$

Tm is temperature at time of measurement

T0 is temperature at time of standardization of tape

⍺ is coefficient of thermal expansion

L is measured length

Latitude : Projection of a line on N - S direction is called Latitude => L = l.cosӨ

Departure : Projection of a line on E - W direction is called Departure => D = l.sinӨ

Closing Error:
    if ΣL ≠ 0 and ΣD ≠ 0 then there is closing error

closing error (e) $$e = \sqrt{{(\sum L)}^2 + {(\sum D)}^2 }$$

Direction of Closing error

$$ {\delta} = {tan}^-1 \left({\sum D\over \sum L}\right) $$

The sign of ΣL and ΣD will thus define the quadrant in which closing error lies

Rules of Balancing the Survey
1) Compass Rule :It states that the correction to be applied to the Latitude and Departure of any course is to the total error in Latitude and Departures as the length of the course is to the length of the traverse.

Bowditch method : Error in linear measurement ∝ √L where L is length of line
                                Error in Angular measurement ∝ √(1/L) 
Note:- This method is mostly used to balance a traverse where linear and angular measurements have been taken with equal precision.

correction to a particular line 

$${C_L} = \left({l\over {\sum l}}\right){\times}{\sum L} $$

$${C_D} = \left({l\over {\sum l}}\right){\times}{\sum D} $$

Where, 

CL = correction in Latitude of a line

ΣL = Total error in Latitude

CD = correction in Departure of a line

ΣD = Total error in Departure

Σl = Sum of length of all lines


(Compass rule is most commonly applied)

2) Transit Rule :It states that the correction to be applied to the Latitude and Departure of any course is to the total error in Latitude and Departures as the length of the course is to the Arithmetical sum of all the Latitude and Departures in the Traverse.
Note:- This method is suitable where angular measurement are more precise than linear measurements.

Correction in Latitude of a line $${C_L} = \left({L\over {L_T}}\right){\times}{\sum L} $$

Correction in Departure of a lin$${C_D} = \left({D\over {D_T}}\right){\times}{\sum D} $$

Where, 

LT = Sum of all Latitudes without considering sign

DT = Sum of all Departures without considering sign

ΣL = Total error in Latitude

ΣD = Total error in Departure

L = Latitude of a line

D = Departure of a line

3) Axis Method :
Note:- This method is suitable where Angles are measured very accurately. so correction are done in length of line only, bearing of lines are not changed.

Correction to any length = That length x 1/2 closing error / Length of Axis

Levelling

Height of Instrument = H.I. = R.L. + B.S.

R.L. = H.I. - F.S.

Arithmetic check

ΣB.S. - ΣF.S. = ΣRise - ΣFall = Last R.L. - First R.L.

Reciprocal levelling

Used to check whether instrument is correct or not

Checking --> 

Setup instrument at point A

    Reading on staff at A = a
    Reading on staff at B = b

Setup instrument at point B

    Reading on staff at A = c
    Reading on staff at B = d

if instrument is correct then (a- b)=(c- d)

True difference between RL A and B (H) 
$$H={{(b-a)+(d-c)}\over 2} $$

Area by Cross-Staff Survey  
$$ A = \frac{1}{2} \times \sum (L_1 + L_2) \times d $$  

where:  
\( L_1, L_2 \) = offsets (m)  
\( d \) = distance between offsets (m)  

Area by Trapezoidal Rule  
$$ A = d \left[ \frac{O_1 + O_n}{2} + O_2 + O_3 + \dots + O_{n-1} \right] $$  

where:  
\( d \) = common distance between offsets  
\( O_1, O_2, \dots, O_n \) = offsets  

Area by Simpson’s Rule  
$$ A = \frac{d}{3} \left[ O_1 + O_n + 4(O_2 + O_4 + \dots) + 2(O_3 + O_5 + \dots) \right] $$  

Rise and Fall Method — RL Calculation  
$$ RL_{next} = RL_{previous} + Rise - Fall $$  

Leveling — Arithmetic Check  
$$ \sum \text{Backsight} - \sum \text{Foresight} = \text{Last RL} - \text{First RL} $$  

Distance by Stadia Method  
$$ D = k \times S + C $$  

where:  
\( D \) = horizontal distance  
\( S \) = staff intercept  
\( k \) = multiplying constant (usually 100)  
\( C \) = additive constant  

Height of Instrument (HI) Method  
$$ HI = RL_{BM} + Backsight $$  
$$ RL_{Point} = HI - Foresight $$  

Correction for Curvature  
$$ C_c = 0.0785 \times d^2 $$  

where:  
\( C_c \) = correction in meters  
\( d \) = distance in km  

Correction for Refraction  
$$ C_r = 0.0116 \times d^2 $$  

Combined Correction (Curvature + Refraction)  
$$ C = 0.067 \times d^2 $$  

Tacheometric Horizontal Distance  
$$ D = \frac{f}{i} \times S \times \cos^2 \theta $$  

where:  
\( f \) = focal length  
\( i \) = stadia hair interval  
\( \theta \) = vertical angle  

Tacheometric Vertical Height  
$$ V = \frac{f}{i} \times S \times \frac{\sin 2\theta}{2} $$  

Bearing Conversion — Quadrantal to Whole Circle Bearing (WCB)  
- NE Quadrant: \( \theta \)  
- SE Quadrant: \( 180^\circ - \theta \)  
- SW Quadrant: \( 180^\circ + \theta \)  
- NW Quadrant: \( 360^\circ - \theta \)  

Local Attraction Correction  
$$ \text{Corrected Bearing} = \text{Observed Bearing} \pm \text{Correction} $$  

Prismoidal Volume Formula  
$$ V = \frac{d}{3} (A_1 + 4A_m + A_2) $$  

where:  
\( A_1, A_2 \) = end areas  
\( A_m \) = mid area  
\( d \) = distance between cross-sections  


Section 2) Transportation Engineering

Stopping site distance

 Stopping site distance (SSD in 'metres') of a vehicle is the sum of :

1) The distance travelled by the vehicle during the total reaction time known as lag distance and 

$${\text{Lag distance}}=0.278Vt$$

2) The distance travelled by the vehicle after the application of the brakes, to a dead stop position which is known as braking distance.

$${\text{Braking distance}}={{V^2}\over {254(f\pm S \%)}}$$

$$\text{SSD = Lag distance + Braking distance}$$

$$SSD = 0.278Vt + {{V^2}\over {254(f\pm S \%)}}$$

Where S% is gradient '+' sign for ascending gradient & '-' sign for descending gradient

Overtaking Site Distance (OSD)

The minimum distance open to the vision of a driver of a vehicle intending to overtake slow vehicle ahead with safety against the traffic of opposite direction is known as minimum overtaking sight distance (OSD) or safe passing site distance available.

OSD = d1+ d2+ d3  ...... Where OSD is overtaking site distance in 'm'
$${d_1}={0.278 V_b t}$$

$${d_2}=b+2S$$

OR

$${d_2}={0.278 V_b t}+{{a T^2}\over 2}$$

Where, S = minimum spacing between 2 vehicles

$$S = 0.2{V_b}+6$$ 
here Vis in km/hr.

$$T = {\sqrt{4s\over a}}$$
Where, a = acceleration in 'm/s2'

$$T = {\sqrt{14.4s\over a}}$$
Where, a = acceleration in 'km/hr/sec'

$${d_3}={0.278 V_c T}$$

Where, d3  = distance travelled by on coming vehicle from C1 to C2  during overtaking operation
V= V= Speed of overtaking vehicle or design speed (km/hr)
if Vis not given then
Vb = (V-16) ..................in km/hr
V= (V-4.5) ..................in m/s

For 1 way traffic 
OSD = d1+ d2
For 2 way traffic 
OSD = d1+ d2+ d3
Minimum length of overtaking zone = 3 x OSD

Desirable overtaking zone = 5 x OSD

Terrain Catogory Over taking Sight Distance Safe stopping sight for minimum design speed Safe stopping sight for Rulling design speed
Plain Terrain 475 120 170
Rolling Terrain 310 90 120
Hilly Terrain - 50 60
Steep - 40 50

Super Elevation (e)

The Super Elevation 'e' is expressed as the ratio of the height of outer edge with respect to horizontal width.

$$e={NL\over ML} = tan\theta = {{V^2}\over 225R}$$

$$e+f = {{V^2}\over 127R}$$

Where, 
V= speed in km/hr
R = Radius in 'm'
f = design value of lateral friction = 0.15
e = rate of super elevation

Maximum Super Elevation
emaxTerrain Type
0.07Plain and Rolling Terrain
0.10Hilly Area
0.04
Urban roads with frequent intersections


Ruling minimum radius of the curve


$${R_{Ruling}} = {{V^2}\over {127(e+f)}}$$

Radii for horizontal curves in meters

Terrain Catogory Absolute Rulling
Plain Terrain 250 370
Rolling Terrain 155 250
Hilly Terrain 50 80
Steep 3050

Extra Widening (Ew)

Extra widening of pavement on horizontal curves is divided into 2 parts
1) Mechanical Widening (Wm):- The widening required to account for the off-tracking due to the rigidity of wheel base is called mechanical widening.
$$W_m = {{n{l^2}}\over 2R}$$

2) Psychological Widening (Wp):- Extra width of pavement is also provided for psychological reason such as to provide for greater maneuverability of steering at higher speeds, to allow for extra space requirements for the overhangs of the vehicles and to provide greater clearance for crossing and overtaking vehicles on the curves. Psychological widening is important in pavements with more than 1 lane.
$$W_p = {V\over {9.5\sqrt{R}}}$$

Combined Extra widening required on curves

$$E_w = W_m + W_p $$

$$E_w = {{n{l^2}}\over 2R} +{V\over {9.5\sqrt{R}}}$$

Transition Curve

The Indian road congress (IRC) reccomends the use of spiral as transition curve in the horizontal alignment of highways due to following reasons:
(i) The Spiral Curve satisfies the requirements of ideal transition.
(ii) The geometric properties of spiral is such that the calculations and setting out the curve in the field is simple and easy.

Length of transition curve (L)

(i) According to rate of change of centrifugal acceleration


$$L = {{0.0215 V^3}\over CR}$$

Where, V = Speed of vehicle in (km/hr)
                C = Allovable rate of change of centrifugal acceleration in (m/s2)
                R = Radius of curve in (m)
                L = Length of transition curve in (m)

(ii) According to rate of change of super elevation

$$L = {\text {150x → For Plain & Rolling Terrain}}$$

$$L = {\text {100x → For Built up area}}$$

$$L = {\text {60x → For Hilly area}}$$

Whre, x = Raise of outer line of road

$$x = (w + E_w )e \text{....... if the pavement rotated about inner side}$$

$$x = (w + E_w ){e \over 2} \text{....... if the pavement rotated about centre line}$$

(iii) According to empirical formula

$$L = {{2.7 V^2}\over R}\text{...........For Plain and Rolling terrain}$$

Note:- This is as per IRC and its minimum value of Transition curve.

$$L = {{V^2}\over R}\text{...........For Hilly area}$$




To find out offset length at desired chainage 'x' the equation of cubical parabola

$$Y = {{x^3}\over {6RL}}$$

$${Shift}= {{{L_s}^2}\over {24R}}$$

$${L_s}={{E\times N}\over 2}$$

$${E\over 2} = {\text {Total Raise of outer edge of Pavement}} ={{eB}\over 2}$$

$$N ⟶{\text {Rate of Distribution of super elevation}}$$

Set Back Distance (m)

The clearance distance or set back distance required from the centre lines of a horizontal curve to an obstruction on the inner side of the curve to provide adequate sight distance depends upon the following factors :
(i) Required Sight distance (SSD)
(ii) Radius of horizontal curve, (R)
(iii) Length of the curve (Lc)

1. For Single lane road


(a) When L> SSD

 $$m = R - R.{Cos{{\alpha} \over 2}}$$

&

$${\alpha \over 2}={{180.s}\over {2\Pi R}}$$

Where, Lc = Length of Curve & s = SSD

(b) Lc < SSD

$$m=R\left({1-cos{\alpha \over 2}}\right) + {{S - L_c}\over 2} sin{\alpha \over 2}$$

&

$${\alpha \over 2}={{180.L_c}\over {2\Pi R}}$$

2. For two lane road


(a) When L> SSD

 $$m = R - (R-d){Cos{{\alpha} \over 2}}$$

&

$${\alpha \over 2}={{180.s}\over {2\Pi (R-d)}}$$

Where, Lc = Length of Curve & s = SSD

(b) Lc < SSD

$$m=R-(R-d)\left({1-cos{\alpha \over 2}}\right) + {{S - L_c}\over 2} sin{\alpha \over 2}$$

&

$${\alpha \over 2}={{180.L_c}\over {2\Pi (R-d)}}$$

Grade Compensation

$$\text{Grade Compensation}={{30 + R}\over R}\%$$

And 

$$\text{Maximum value of Grade Compensation}={{75}\over R}\%$$

Where, R = radius of curve in meter

Vertical Curve

Due to changes in grade in vertical alignment of highway, it is necessary to introduce vertical curves at the intersections of different grades to smoothen out the vertical profile and thus ease off changes in gradients for fast moving vehicles.

The vertical curves used in highways may be classified into two categories :
(i) Summit curves or crest curves with convexity upwards
(ii) Valley or sag curves with concavity upwards.

Summit curves (Crest curve with convexity upwards):

Summit curves with convexity upwards are formed in any one of the case illustrated in fig. The deviation angles between the two interacting gradients is equal to the algebraic difference between them. Of all the cases, the deviation angles will be maximum when an ascending gradient meets with a descending gradient. i.e. N = n1 - (- n2) = n1 + n2

(i) Length of Summit curve for SSD

(a) When L > SSD

$$L = {{NS^2}\over {(\sqrt{2H} + \sqrt{2h})^2}}$$


$$L = {{NS^2}\over 4.4}$$

Where, L = Length of summit curve in meter
            S = SSD (m)
            N = Deviation Angle
                = Algebraic deference of grade
            H = Height of eye level of driver above road way surface ≈ 1.2 m
            H = Height of object above Pavement surface ≈ 0.15 m

(a) When L < SSD


$$L = 2S-{{(\sqrt{2H} + \sqrt{2h})^2}\over N}$$

$$L = 2S - {4.4\over N}$$

(ii) Length of Summit curve for Safe Overtaking Distance (OSD) or Intermediate Sight Distance (ISD)

(a) When L > OSD

$$L = {{N{S_o}^2}\over {(\sqrt{2H} + \sqrt{2h})^2}}$$


$$L = {{N{S_o}^2}\over 9.6}$$

Where, So = Overtaking or Intermediate sight distance

(b) When L < OSD

$$L = 2S-{{(\sqrt{2H} + \sqrt{2h})^2}\over N}$$

$$L = 2{S_o} - {9.6\over N}$$

Valley Curves (Sag curve with Concavity Upward):


(i) Length of Valley curve as per comfort condition (Transition curves are provided back to back)
$$L=2\left[NV^3 \over C\right]^{1\over 2}$$

if C = 0.6 m/s2 then 

$$L=0.38(NV^3)^{1\over 2}$$

(ii) Length of Valley curve for head light sight distance (Parabolic Curve is provided)

Summit curves (Crest curve with convexity upwards):

Summit curves with convexity upwards are formed in any one of the case illustrated in fig. The deviation angles between the two interacting gradients is equal to the algebraic difference between them. Of all the cases, the deviation angles will be maximum when an ascending gradient meets with a descending gradient. i.e. N = n1 - (- n2) = n1 + n2

(i) Length of Summit curve for SSD

(a) When L > SSD

$$L = {{NS^2}\over {(2h_1 + 2S.tan\alpha)}}$$


$$L = {{NS^2}\over {1.5+0.035S}}$$

Where, L = Total Length of Valley curve in meter
            S = SSD (m)
            N = Deviation Angle
                = Algebraic deference of grade
            α = Beam Angle ≈ 1o
            h1 = Avg. Height of headlight above Pavement surface ≈ 0.75 m

(a) When L < SSD


$$L = 2S-{{(2h_1 + 2S.tan\alpha)}\over N}$$

$$L = 2S - {{1.5+0.035S}\over N}$$

Vehicle Damage Factor (VDF)  
$$ \text{VDF} = \left( \frac{\text{Axle Load (kN)}}{\text{Standard Axle Load (kN)}} \right)^4 $$  

Cumulative Number of Standard Axles (N)  
$$ N = 365 \times A \times D \times F \times \left( 1 + r \right)^n $$  

where:  
\( A \) = initial commercial vehicles/day  
\( D \) = lane distribution factor  
\( F \) = vehicle damage factor  
\( r \) = growth rate  
\( n \) = design life in years  

California Bearing Ratio (CBR) Modulus  
$$ E_{subgrade} = 17.6 \times (\text{CBR})^{0.64} \text{ MPa} $$  

Flexible Pavement — Structural Number (AASHTO Method)  
$$ SN = a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3 $$  

where:  
\( a \) = layer coefficient  
\( D \) = layer thickness (in inches)  
\( m \) = drainage coefficient  

IRC:37-2018 — Design Traffic (in msa)  
$$ N = \frac{365 \times A \times (1+r)^n - 1}{r} \times F \times D $$  

Deflection-Based Overlay Design (Benkelman Beam Method)  
$$ \text{Overlay Thickness (mm)} = C \times (\text{Measured Deflection} - \text{Permissible Deflection}) $$  

Rigid Pavement — Westergaard's Stress Equation for Edge Load  
$$ \sigma = \frac{3P}{2\pi h^2} \times \left[ \ln \left( \frac{1.6a}{h} \right) + 0.675 \right] $$  

where:  
\( P \) = wheel load  
\( h \) = slab thickness  
\( a \) = radius of contact area  

Radius of Relative Stiffness (l)  
$$ l = \left( \frac{Eh^3}{12(1-\mu^2)k} \right)^{0.25} $$  

where:  
\( E \) = modulus of elasticity  
\( \mu \) = Poisson's ratio  
\( k \) = modulus of subgrade reaction  

Traffic Growth Rate Formula  
$$ T_f = T_0 (1 + r)^n $$  

where:  
\( T_f \) = traffic after \( n \) years  
\( T_0 \) = initial traffic  
\( r \) = growth rate  

Mean Texture Depth (MTD)  
$$ \text{MTD} = \frac{\text{Volume of Sand (ml)}}{\text{Area (mm}^2)} \times 1000 $$  


Section 3) Mechanics of Materials

Stress

 Strain

$$\varepsilon = \frac{\Delta L}{L}$$

Hooke's Law

$$\sigma = E \times \varepsilon$$

Shear Stress

 Bending Stress (Flexure Formula)

Torsional Shear Stress

Deflection of Simply Supported Beam (Center Load)

Euler's Buckling Load (Pinned-Pinned)

Moment of Inertia (Rectangle)

Torsion Equation

Principal Stresses (2D)

Maximum Shear Stress

Strain Energy (Axial Load)

Castigliano's Theorem (Deflection at point of load P)

 Shear Force (Beam Element)

$$\frac{dV}{dx} = -w(x)$$

 Bending Moment (Beam Element)

$$\frac{dM}{dx} = V(x)$$

 Relation between Moment and Slope

 Slenderness Ratio

 Radius of Gyration

Section 4) Hydraulics

 The depth at partial flow can be evaluated from equation -

$$ d = ({D\over 2}-{D\over 2}.cos{\alpha\over 2}) $$

Area of cross section while running partially full 

$$ a ={\pi D^2\over 4}({\alpha\over 360^\circ}-{sin\alpha\over 2\pi})$$

Wetted perimeter, while running partially full 
$$P = \pi D{\alpha\over 360^\circ}$$


Hydraulic mean depth, while running partially full

$$ r = {a\over P} $$


Velocity of flow is given by Manning's formula

$$ v = {1\over N}.R^{2\over 3}.s^{1\over 2}$$

Discharge when pipe is running partially full,

q =av

Proportionate discharge  = $$ {q\over Q} = {{a.v}\over {A.v'}}$$

=$$ {q\over Q} =({\alpha\over 360^\circ}-{sin\alpha\over 2\pi}).{(1-{{{360^\circ}sin\alpha}\over {2 \pi \alpha}})}^{2\over 3}$$

for detailed derivation go to link

The broad-crested weir is a type of weir used in open channel flow measurements, which has a rectangular notch on top. The discharge over a broad-crested weir can be calculated using the following equation:

$$Q = CLH^{3/2}$$

where:

  • Q is the discharge over the weir [m^3/s],
  • C is the discharge coefficient, which depends on the shape and size of the weir,
  • L is the width of the weir [m],
  • H is the height of the water above the weir crest [m].

To calculate the value of C, you can use one of the following equations:

  • For a rectangular weir:

$$C = 1.84 - 0.5\left(\frac{H}{L}\right)^{1.5} + 0.25\left(\frac{H}{L}\right)^3$$


For Trapezoidal weir:-

$$C = \frac{2}{3}\left(1 + \frac{2h}{b}\right)\left(1 - \frac{h}{H}\right)^{3/2}$$


where b is the bottom width of the trapezoidal notch, and h is the height of the notch.

The sharp-crested weir is another type of weir commonly used in open channel flow measurements. Unlike the broad-crested weir, it has a sharp edge or crest at the top of the notch. The discharge over a sharp-crested weir can be calculated using the following equation:

Rectangular weir equation:

$$Q = CLH^{3/2}$$ $$C = 1.33\sqrt{\frac{2g}{H}}\left(\frac{L}{H}\right)^{1/2}$$

where g is the acceleration due to gravity (approximately 9.81 m/s^2)
V-notch weir equation:

$$Q = CLH^{3/2}$$ $$C = \frac{1}{2}\sqrt{\frac{2g}{H}}\tan\left(\frac{\theta}{2}\right)$$

Where, Ө is the V-notch angle in degrees.

Note that you will need to provide values for L, H, and either assume a value for C (for a rectangular weir) or measure the V-notch angle Ө (for a V-notch weir) in order to calculate the discharge Q.

The Chezy formula is an empirical equation used to calculate the average velocity of flow in an open channel. The formula is given as:

$$V = C\sqrt{RS}$$

where:

  • V is the average velocity of flow [m/s],
  • C is the Chezy coefficient, which is a dimensionless constant that depends on the roughness of the channel,
  • R is the hydraulic radius, which is the cross-sectional area of flow divided by the wetted perimeter [m],
  • S is the slope of the energy line, which is the change in energy per unit length of the channel [m/m].
Note that you will need to provide values for C, R, and S in order to calculate the average velocity of flow V. The value of C can be determined using experimental data or reference tables, and R can be calculated from the dimensions of the cross section of the channel.

The loss of head due to friction is an important concept in fluid mechanics and is often used in the design of pipelines and other fluid transport systems. The loss of head due to friction is given by the Darcy-Weisbach equation:

$$h_f = \frac{fLV^2}{2gd}$$

where:

  • h_f is the loss of head due to friction [m],
  • f is the Darcy-Weisbach friction factor, which depends on the Reynolds number and the roughness of the pipe,
  • L is the length of the pipe [m],
  • V is the average velocity of flow in the pipe [m/s],
  • g is the acceleration due to gravity (approximately 9.81 m/s^2), and
  • d is the diameter of the pipe [m].
Note that you will need to provide values for f, L, V, g, and d in order to calculate the loss of head due to friction h_f. The value of f can be determined using experimental data or reference tables, and V, L, and d can be measured or determined from the design of the pipe system.

Manning's formula is an empirical equation used to calculate the average velocity of flow in an open channel. The formula is given as:

$$V = \frac{1}{n}R^{2/3}S^{1/2}$$

where:

  • V is the average velocity of flow [m/s],
  • n is the Manning's roughness coefficient, which is a dimensionless constant that depends on the roughness of the channel,
  • R is the hydraulic radius, which is the cross-sectional area of flow divided by the wetted perimeter [m],
  • S is the slope of the energy line, which is the change in energy per unit length of the channel [m/m].
Runoff Coefficient Method (Rational Formula) $$ Q = C \times I \times A $$ where: \( Q \) = peak discharge (m³/s) \( C \) = runoff coefficient \( I \) = rainfall intensity (mm/hr) \( A \) = catchment area (hectares) Time of Concentration (Kirpich Equation) $$ T_c = 0.01947 \times L^{0.77} \times S^{-0.385} $$ where: \( T_c \) = time of concentration (minutes) \( L \) = length of channel reach (m) \( S \) = slope of channel Rainfall Intensity-Duration-Frequency (IDF) Equation $$ I = \frac{K \times T_r^n}{(t + b)^m} $$ where: \( I \) = intensity (mm/hr) \( T_r \) = return period (years) \( t \) = duration (minutes) \( K, n, b, m \) = constants from IDF curves Infiltration Rate (Horton's Equation) $$ f(t) = f_c + (f_0 - f_c) e^{-kt} $$ where: \( f(t) \) = infiltration rate at time \( t \) \( f_0 \) = initial infiltration rate \( f_c \) = final constant infiltration rate \( k \) = decay constant SCS Curve Number Method — Direct Runoff $$ Q = \frac{(P - 0.2S)^2}{P + 0.8S} $$ where: \( P \) = rainfall (mm) \( S \) = potential maximum retention (mm) and $$ S = \frac{25400}{CN} - 254 $$ \( CN \) = curve number Unit Hydrograph (UH) Peak Discharge $$ Q_p = \frac{2.78 \times A}{T_r} $$ where: \( Q_p \) = peak discharge (m³/s) \( A \) = area (km²) \( T_r \) = time to peak (hours) Flood Frequency Analysis (Gumbel’s Formula) $$ X_T = \bar{X} + K \times \sigma $$ where: \( X_T \) = flood magnitude for return period \( T \) \( \bar{X} \) = mean flood value \( \sigma \) = standard deviation \( K \) = frequency factor Probability of Exceedance $$ P = \frac{m}{(N+1)} \times 100 $$ where: \( m \) = rank of event \( N \) = total number of years of record Evapotranspiration (Blaney-Criddle Method) $$ ET = p \times (0.46T + 8) $$ where: \( ET \) = evapotranspiration (mm) \( p \) = percentage of total annual daytime hours \( T \) = mean daily temperature (°C) Storage Capacity of Reservoir (Prismoidal Formula) $$ V = \frac{h}{3} (A_1 + 4A_m + A_2) $$ where: \( V \) = volume (m³) \( h \) = vertical distance between sections (m) \( A_1, A_2 \) = end areas (m²) \( A_m \) = mid area (m²)








Section 5) Stresses in Structures

 Equation of Pure torsion

$${T\over {I_p}}={\tau \over r}={{G \theta} \over L}$$

Where, 

τ --> Shear stress for example shear stress on wall of a tube subjected to torsion

Ө --> Angle of twist

$$G = {E\over {2(1+\mu)}}$$

1) Circular tube subjected to torsion

$$\text{Polar Moment of Inertia }{I_p} = \text{Area of The section }\times{r^2}$$

$$(\pi D t)\times \left({D \over 2}\right)^2  = {{\pi {D^3} t}\over 4}$$

2) Thin Square tube subjected to torsion

Maximum shear stress τ is given by

$$\tau = {T\over {2A.t}}$$


Normal Stress (Axial)  

$$ \sigma = \frac{P}{A} $$  

Where:  

\( \sigma \) = Normal stress (N/mm² or MPa)  

\( P \) = Axial load (N)  

\( A \) = Cross-sectional area (mm²)



Shear Stress  

$$ \tau = \frac{V}{A} $$  

Where:  

\( \tau \) = Shear stress (N/mm²)  

\( V \) = Shear force (N)  

\( A \) = Area resisting shear (mm²)



Bending Stress (Flexural Formula)  

$$ \sigma = \frac{M y}{I} $$  

Where:  

\( M \) = Bending moment (Nmm)  

\( y \) = Distance from neutral axis (mm)  

\( I \) = Moment of inertia (mm⁴)


Torsional Shear Stress  

$$ \tau = \frac{T r}{J} $$  

Where:  

\( T \) = Applied torque (Nmm)  

\( r \) = Distance from center to outer fiber (mm)  

\( J \) = Polar moment of inertia (mm⁴)


Combined Axial and Bending Stress  

$$ \sigma_{max} = \frac{P}{A} \pm \frac{M y}{I} $$  


Principal Stresses (2D State)  

$$ \sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} $$  

Where:  

\( \sigma_x, \sigma_y \) = Normal stresses  

\( \tau_{xy} \) = Shear stress


Maximum Shear Stress  

$$ \tau_{max} = \frac{\sigma_1 - \sigma_2}{2} $$  


Bearing Stress  

$$ \sigma_b = \frac{P}{A_b} $$  

Where:  

\( A_b \) = Bearing area (mm²)


Hoop (Circumferential) Stress (Thin Cylindrical Pressure Vessel)  

$$ \sigma_h = \frac{p d}{2 t} $$  

Where:  

\( p \) = Internal pressure (N/mm²)  

\( d \) = Internal diameter (mm)  

\( t \) = Thickness (mm)


Longitudinal Stress (Pressure Vessel)  

$$ \sigma_l = \frac{p d}{4 t} $$  



Section 6) Steel Design

 Design Stress in Steel

 Design Tensile Strength (Gross Section)

 Design Tensile Strength (Net Section)

Slenderness Ratio

Plastic Section Modulus

Shear Strength (Web Area)

 Bolt Shear Strength (Single Plane)

Weld Strength

Factored Load

$$P_u = \gamma_f \times P$$

Bending Moment — Shear Force Relation

$$\frac{dM}{dx} = V(x)$$

Section 7) Concrete Mix Design

Water-Cement Ratio (Abram’s Law)  

$$ \frac{f_1}{f_2} = \left(\frac{w_2}{w_1}\right)^n $$   


where:  

\( f_1, f_2 \) = compressive strengths  

\( w_1, w_2 \) = water-cement ratios  

\( n \) = constant (usually between 5 to 7)  


Volume of Concrete  

$$ V = \frac{W + \frac{C}{\rho_c} + \frac{F}{\rho_f} + \frac{C.A}{\rho_{ca}} + \frac{F.A}{\rho_{fa}} + \frac{W}{\rho_w}}{1000} $$  


Absolute Volume of Cement  

$$ V_c = \frac{W_c}{\rho_c} $$  


Absolute Volume of Fine Aggregate  

$$ V_{fa} = \frac{W_{fa}}{\rho_{fa}} $$  


Absolute Volume of Coarse Aggregate  

$$ V_{ca} = \frac{W_{ca}}{\rho_{ca}} $$  


Volume of Water  

$$ V_w = \frac{W_w}{\rho_w} $$  


Air Content (as percentage)  

$$ \text{Air \%} = \frac{V_{air}}{V_{total}} \times 100 $$  


Aggregate Proportioning by Weight  

$$ \frac{W_{ca}}{W_{fa}} = \frac{V_{ca} \times \rho_{ca}}{V_{fa} \times \rho_{fa}} $$  


Volume of Cementitious Materials  

$$ V_m = \frac{W_c}{\rho_c} + \frac{W_{fa}}{\rho_{fa}} + \frac{W_{ca}}{\rho_{ca}} + \frac{W_w}{\rho_w} $$  


Adjustment for Moisture Content  

$$ W_{corrected} = W_{SSD} + (MC \times W_{SSD}) $$  


Correction for Aggregate Water Absorption  

$$ W_{adjusted} = W_{SSD} - (Absorption \times W_{SSD}) $$  


Target Mean Strength  

$$ f_{ck'} = f_{ck} + t \times s $$  

where  

\( f_{ck} \) = characteristic strength  

\( t \) = tolerance factor (from IS 456 table)  

\( s \) = standard deviation  


Volume of Entrapped Air  

$$ V_{air} = \text{as per IS 10262 recommendations (usually 1-2\%)} $$  


Modulus of Elasticity of Concrete  

$$ E_c = 5000 \sqrt{f_{ck}} $$  


where:  

\( E_c \) = modulus of elasticity (MPa)  

\( f_{ck} \) = characteristic compressive strength (MPa)  



Bulking of Sand (Approximate Correction)  

$$ \text{Corrected Sand Volume} = \frac{\text{Specified Volume}}{1 + \frac{\text{Bulking Percentage}}{100}} $$  


Mix Proportion by Volume  

**For M20 concrete**  

1 : 1.5 : 3 (Cement : Sand : Aggregate)  

Water-cement ratio as per design requirements.


Fineness Modulus (FM)  

$$ FM = \frac{\text{Cumulative \% retained on standard sieves}}{100} $$  


Slump Test Value Range  

- Very low workability: 0–25 mm  

- Low workability: 25–50 mm  

- Medium workability: 50–100 mm  

- High workability: 100–175 mm  


Degree of Workability — Compaction Factor  

- Very low: 0.70  

- Low: 0.85  

- Medium: 0.92  

- High: 0.95  


Ultimate Creep Strain  

$$ \epsilon_{cr} = \phi \times \epsilon_{e} $$  


where:  

\( \epsilon_{cr} \) = creep strain  

\( \phi \) = creep coefficient  

\( \epsilon_{e} \) = elastic strain  


Maturity of Concrete (Nurse-Saul Equation)  

$$ M = \sum (T_a - T_0) \times \Delta t $$  


where:  

\( T_a \) = average concrete temperature  

\( T_0 \) = datum temperature (usually -11°C)  

\( \Delta t \) = time interval (hours)  


Specific Gravity  

$$ G = \frac{\text{Weight of Aggregate in Air}}{\text{Weight of Equal Volume of Water}} $$  


Water Absorption of Aggregate  

$$ \text{Water Absorption (\%)} = \frac{W_{ssd} - W_{oven}}{W_{oven}} \times 100 $$  


where:  

\( W_{ssd} \) = saturated surface dry weight  

\( W_{oven} \) = oven-dry weight  


Segregation Index (SI)  

$$ SI = \frac{\text{Difference of densities of top & bottom layers}}{\text{Average density}} $$  


Compressive Strength Formula  

$$ f_c = \frac{P}{A} $$  


where:  

\( P \) = failure load (N)  

\( A \) = loaded area (mm²)  


Cement Content per Bag  

**1 bag cement = 50 kg = 0.035 m³**


Section 8) Geotechnical Engineering

 Cohesive soils:- Soil consisting of the finer products of rock weathering. Cohesion is derived from large number of water films associated with the fine grained particles in the soil.

Total force of Attraction between two particle (f) =

$$f={{2 {\pi} rT}\over {1+tan \left({\theta}\over 2 \right) }}$$ 

where   r => Radius of Particle

            T => Surface Tension

Liquidity index:-The difference between natural moisture content and plastic limit expressed as percentage ratio of the plasticity index. 

$$LI={{m-PL}\over {LL-PL}}\times 100$$ 

m => moisture content

Plasticity Index:-The numerical difference between liquid limit and plastic limit of a soil.

$$\text{Plasticity Index}={\text{Liquid Limit }-\text{ Plastic Limit}} $$

Water Content  

$$ w = \frac{W_w}{W_s} \times 100 $$  


Specific Gravity of Soil Solids  

$$ G = \frac{W_s}{W_s - W_w} $$  


Void Ratio  

$$ e = \frac{V_v}{V_s} $$  


Porosity  

$$ n = \frac{V_v}{V} \times 100 $$  


Degree of Saturation  

$$ S_r = \frac{V_w}{V_v} \times 100 $$  


Dry Density  

$$ \rho_d = \frac{W_s}{V} $$  


Bulk Density  

$$ \rho = \frac{W}{V} $$  


 Saturated Density  

$$ \rho_{sat} = \frac{W_{sat}}{V} $$  


 Submerged Density  

$$ \rho' = \rho_{sat} - \rho_w $$  


 Unit Weight Relationships  

$$ \gamma_d = \frac{G \times \gamma_w}{1+e} $$  


 Liquidity Index  

$$ LI = \frac{w - PL}{LL - PL} \times 100 $$  


 Plasticity Index  

$$ PI = LL - PL $$  


 Flow Index  

$$ FI = \frac{w_1 - w_2}{\log(N_2/N_1)} $$  


 Consistency Index  

$$ CI = \frac{LL - w}{PI} $$  


 Shear Strength (Coulomb’s Equation)  

$$ \tau = c + \sigma \tan \phi $$  


Terzaghi’s Bearing Capacity Equation  

$$ q_u = c N_c + \gamma D_f N_q + 0.5 \gamma B N_\gamma $$  


 Settlement of Soil  

$$ S = \frac{C_c}{1+e_0} \log \left( \frac{\sigma'_0 + \Delta \sigma}{\sigma'_0} \right) \times H $$  


 Factor of Safety (Slope Stability)  

$$ FOS = \frac{\text{Resisting forces}}{\text{Driving forces}} $$

Section 9) Sewerage and Sewage disposal 

 Chezy’s Formula

$$ V = C \sqrt{R S} $$

Where:

V = Velocity of flow (m/s)

C = Chezy's coefficient

R = Hydraulic radius (m)

S = Slope of the energy line (m/m)

Manning’s Formula

$$ V = \frac{1}{n} R^{2/3} S^{1/2} $$

Where:

n = Manning’s roughness coefficient

R = Hydraulic radius (m)

S = Slope of the channel (m/m)


Hydraulic Radius  

$$ R = \frac{A}{P} $$​

Where:

A = Area of flow (m²)

P = Wetted perimeter (m)


Discharge in Open Channel  

$$ Q = A \times V $$

Where:

Q = Discharge (m³/s)

A = Area of flow (m²)

V = Velocity (m/s)


  • Population Forecast (Arithmetic Increase Method)  

    $$ P_n = P_0 + n \times I $$

    Where:

    Pn = Population after nn decades

    P0 = Present population

    II = Average increase per decade

    nn = Number of decades


     Population Forecast (Geometric Increase Method)  

    $$ P_n = P_0 (1 + r)^n $$

    Where:

    Pn = Population after n decades

    P0 = Present population

    r = Growth rate (as decimal)

    n = Number of decades


    Sewage Flow Estimation  

    $$ Q = q \times P $$

    Where:

    Q= Sewage discharge (litres/day)

    q = Per capita sewage generation (litres/person/day)


    $$ P_n = P_0 + n \times I $$

    P = Population


    BOD First Order Reaction  

    $$ BOD_t = BOD_0 \left(1 - e^{-k t}\right) $$

    Where:

    BODt = BOD exerted at time tt

    BOD0 = Ultimate BOD

    k = Reaction rate constant (per day)

    t = Time in days


    Oxygen Demand for Nitrification  

    $$ O_2 = 4.57 \times NH_3 $$


    Detention Time in Sedimentation Tank  

    $$ t = \frac{V}{Q} $$

    Where:

    t = Detention time (seconds or hours)

    V= Volume of tank (m³)

    Q = Flow rate (m³/s or m³/h)

    Detention Time in Sedimentation Tank  

    $$ t = \frac{V}{Q} $$  


    Where:  

    \( t \) = Detention time (sec or hours)  

    \( V \) = Volume of tank (m³)  

    \( Q \) = Flow rate (m³/sec)



    Surface Loading Rate (Overflow Rate)  

    $$ \text{SLR} = \frac{Q}{A} $$  


    Where:  

    \( Q \) = Flow rate (m³/day)  

    \( A \) = Surface area of tank (m²)



    BOD (Biochemical Oxygen Demand) Removal  

    $$ BOD_t = BOD_0 \left(1 - e^{-k t}\right) $$  


    Where:  

    \( BOD_0 \) = Initial BOD (mg/L)  

    \( k \) = Reaction rate constant (day⁻¹)  

    \( t \) = Time (days)



    BOD Loading on Aeration Tank  

    $$ \text{BOD Loading} = \frac{Q \times BOD}{V} $$  


    Where:  

    \( Q \) = Flow rate (m³/day)  

    \( BOD \) = Concentration (mg/L)  

    \( V \) = Volume of aeration tank (m³)



    Food to Microorganism Ratio (F/M Ratio)  

    $$ F/M = \frac{Q \times S_0}{V \times X} $$  


    Where:  

    \( Q \) = Flow rate (m³/day)  

    \( S_0 \) = Influent BOD (mg/L)  

    \( V \) = Volume of aeration tank (m³)  

    \( X \) = MLSS (Mixed Liquor Suspended Solids) (mg/L)


    Mean Cell Residence Time (MCRT)  

    $$ \theta_c = \frac{V \times X}{Q_w \times X_w + Q_e \times X_e} $$  


    Where:  

    \( Q_w \) = Waste sludge flow rate (m³/day)  

    \( X_w \) = Concentration of solids in waste sludge (mg/L)  

    \( Q_e \) = Effluent flow rate (m³/day)  

    \( X_e \) = Effluent solids concentration (mg/L)


    Sludge Volume Index (SVI)  

    $$ SVI = \frac{\text{Settled Sludge Volume (mL/L)}}{\text{MLSS (mg/L)}} \times 1000 $$  


    Where:  

    SVI in mL/g



    Air Requirement for Aeration  

    $$ Q_{air} = \frac{Q \times BOD \times Y}{C} $$  


    Where:  

    \( Q_{air} \) = Air required (m³/hr)  

    \( Y \) = Oxygen requirement per kg of BOD (kg O₂/kg BOD)  

    \( C \) = Oxygen transfer efficiency



    Chlorine Dose  

    $$ \text{Dose (mg/L)} = \frac{\text{Chlorine applied (mg)}}{\text{Volume (L)}} $$  



    pH Definition  

    $$ pH = -\log[H^+] $$  


    Where:  

    \( [H^+] \) = Hydrogen ion concentration (mol/L)


    Section 10) Water Supply and Purification

    Population Forecasting (Arithmetic Increase Method)  

    $$ P_n = P_0 + n \times I $$  


    Per Capita Demand  

    $$ q = \frac{Q}{P} $$  


    Detention Time in Sedimentation Tank  

    $$ t = \frac{V}{Q} $$  


    Surface Loading Rate (Overflow Rate)  

    $$ SLR = \frac{Q}{A} $$  


     Filter Rate (for Rapid Sand Filter)  

    $$ FR = \frac{Q}{A} $$  


    Chlorine Dose  

    $$ C_d = C_r + D_c $$  


    Disinfection Contact Time (CT Concept)  

    $$ C \times T = \text{constant for effective disinfection} $$  


    Water Pipe Flow (Hazen-Williams Equation)  

    $$ V = 0.85 \times C \times R^{0.63} \times S^{0.54} $$  


    Loss of Head in Filter  

    $$ h_f = \frac{Q^2}{K} $$  


    Water Demand Formula (General)  

    $$ Q = q \times P $$

    Section 11) Building Materials

    SR. No. Items Unit Materials
    Particulars Quantity Unit
    1 Brick Work 100 cu.m Bricks 50000 Nos
    Mortar 30 cu.m
    2 Rubble stone Masonry 100 cu.m Stone 125 cu.m
    Mortar 42 cu.m
    3 25 mm Cement Concrete 1:2:4 100 sq.m Stone grit 2.4 cu.m
    sand 1.2 cu.m
    cement 24 Bags
    4 12 mm thick plastering 100 sq.m Mortar 2 cu.m
    5 Pointing in brickwork 100 sq.m Mortar 0.6 cu.m
    6 White washing one coat 100 sq.m Lime 10 Kg
    7 Distempring
    i) First coat 100 sq.m Dry distemper 6.5 Kg
    ii) Second coat 100 sq.m Dry distemper 5 Kg
    8 Oil Painting one coat 100 sq.m Ready-made paint 10 Litres
    9 Oil Painting one coat 100 sq.m Paint stiff 10 Kg
    10 20 mm thick Damp-proof course of 1:2:4 cement Mortar 100 sq.m Cement 27 Bags
    Sand 1.8 Cu.m
    Imperno 27 Kg
    11 Painting with bitumen
    i) First coat 100 sq.m Bitumen 150 Kg
    ii) Second coat 100 sq.m Bitumen 100 Kg
    12 C.G.I. Sheet Roofing 100 sq.m C.G.I. sheets 128 Sq.m
    13 A.C. Sheet Roofing 100 sq.m A.C. sheets 115 Sq.m
    14 Panneled door shutter 40 mm thick 100 sq.m Timber 4.5 Cu.m
    15 Battened door shutter 40 mm thick 100 sq.m Timber 5 Cu.m
    16 Partialy Panneled and Glazed shutter 40 mm thick 100 sq.m Timber 3 Cu.m
    17 Fully glazed shutter 40 mm thick 100 sq.m Timber 2 Cu.m

     Fineness Modulus (for Aggregates)  

    $$ \text{FM} = \frac{\text{Cumulative retained on standard sieves}}{100} $$  

    (Fineness modulus indicates average particle size.)

  • Compressive Strength (for Bricks, Cement Cubes etc.)  

    $$ \text{Compressive Strength} = \frac{\text{Ultimate Load}}{\text{Area of Specimen}} $$  

    Units: N/mm²  


    Modulus of Rupture (for Concrete)  

    $$ f_{cr} = \frac{3P}{2bd^2} $$  

    Where:  
    \( P \) = Load at failure (N)  
    \( b \) = Width of specimen (mm)  
    \( d \) = Depth of specimen (mm)  

    Cement Soundness Test  

    Limit: Expansion should not exceed **10 mm** (Le-Chatelier Apparatus)


    Standard Consistency of Cement  

    $$ \text{Consistency (\%)} = \frac{\text{Weight of Water}}{\text{Weight of Cement}} \times 100 $$  

    Standard value: 26% to 33%


    Initial and Final Setting Time (Cement)  

    - **Initial Setting Time** ≥ 30 minutes  
    - **Final Setting Time** ≤ 600 minutes  

    No formula — practical test with Vicat apparatus.

    Section 12) Irrigation Engineering

    Duty (D)  
    $$ D = \frac{8.64 \times B}{\Delta} $$  

    where:  
    \( D \) = duty (hectare/cumec)  
    \( B \) = base period (days)  
    \( \Delta \) = depth of water (cm)  



    Delta (Δ)  
    $$ \Delta = \frac{8.64 \times B}{D} $$  



    Base Period (B)  
    $$ B = \frac{\Delta \times D}{8.64} $$  



    Consumptive Use (U)  
    $$ U = E + T + E_T $$  

    where:  
    \( E \) = evaporation  
    \( T \) = transpiration  
    \( E_T \) = other uses  



    Crop Water Requirement (WR)  
    $$ WR = IR + ER $$  

    where:  
    \( IR \) = irrigation requirement  
    \( ER \) = effective rainfall  



    Irrigation Efficiency  
    **a) Water Conveyance Efficiency (Ec)**  
    $$ E_c = \frac{W_f}{W_e} \times 100 $$  

    **b) Water Application Efficiency (Ea)**  
    $$ E_a = \frac{W_s}{W_f} \times 100 $$  

    **c) Water Storage Efficiency (Es)**  
    $$ E_s = \frac{W_s}{W_n} \times 100 $$  

    **d) Water Distribution Efficiency (Ed)**  
    $$ E_d = \left(1 - \frac{y}{d}\right) \times 100 $$  

    where:  
    \( W_e \) = water delivered at field entrance  
    \( W_f \) = water delivered to field  
    \( W_s \) = water stored in root zone  
    \( W_n \) = water needed in root zone  
    \( y \) = average numerical deviation from mean depth  
    \( d \) = mean depth of water stored  



    Kennedy’s Critical Velocity Formula  
    $$ V_0 = 0.55 \times R^{0.64} $$  

    where:  
    \( V_0 \) = critical velocity (m/s)  
    \( R \) = hydraulic mean depth (m)  



    Lacey’s Silt Factor  
    $$ f = 1.76 \times \sqrt{d} $$  

    where:  
    \( d \) = mean particle size in mm  



    Lacey’s Velocity Formula  
    $$ V = \left(\frac{Q f^2}{140}\right)^{1/6} $$  



    Lacey’s Regime Perimeter  
    $$ P = 4.75 \times \sqrt{Q} $$  



    Lacey’s Regime Area  
    $$ A = 1.0 \times Q^{5/6} / f^{0.5} $$  



    Crop Factor Method (for estimating Consumptive Use)  
    $$ U = K_c \times E_{pan} $$  

    where:  
    \( K_c \) = crop coefficient  
    \( E_{pan} \) = pan evaporation  



    Delta for Crop  
    $$ \Delta = \frac{WR \times 100}{8.64 \times B} $$  



    Command Area  
    **Gross Commanded Area (GCA):** total area commanded by canal  
    **Culturable Commanded Area (CCA):** area fit for cultivation  
    **Intensity of Irrigation (I):**  
    $$ I = \frac{\text{Net Irrigated Area}}{\text{CCA}} \times 100 $$  



    Canal Lining — Reduction in Seepage Loss  
    $$ \text{Seepage Loss Reduction (\%)} = \frac{S_1 - S_2}{S_1} \times 100 $$  

    where:  
    \( S_1 \) = seepage loss in unlined canal  
    \( S_2 \) = seepage loss in lined canal  

    Section 13) Construction Management

    Time-Cost Trade Off (Crash Cost / Slope of Cost Curve)  

    $$ \text{Crash Cost Slope (CCS)} = \frac{\text{Crash Cost} - \text{Normal Cost}}{\text{Normal Time} - \text{Crash Time}} $$  



    Total Float (TF)  

    $$ TF = LFT - EFT $$  

    or  

    $$ TF = LST - EST $$  

    where:  
    \( LFT \) = Latest Finish Time  
    \( EFT \) = Earliest Finish Time  
    \( LST \) = Latest Start Time  
    \( EST \) = Earliest Start Time  


    Free Float (FF)  

    $$ FF = \text{Earliest Start of Following Activity} - \text{Earliest Finish of Current Activity} $$  



    Independent Float (IF)  

    $$ IF = \text{Earliest Start of Following Activity} - \text{Latest Finish of Current Activity} $$  



    Critical Path Method (CPM)  

    - Longest duration path through a network  
    - All critical activities have zero float.



    Cost-Time Optimization Slope  

    $$ \text{Slope} = \frac{\text{Crash Cost} - \text{Normal Cost}}{\text{Normal Time} - \text{Crash Time}} $$  



    Resource Allocation Formula  

    $$ \text{Resource Required per Day} = \frac{\text{Total Work Quantity}}{\text{Available Working Days}} $$  



    Labour Productivity  

    $$ \text{Productivity} = \frac{\text{Work Done}}{\text{Man-Hours}} $$  



    Earned Value (EV)  

    $$ EV = \text{Percent Complete} \times \text{Budget at Completion (BAC)} $$  


    Schedule Variance (SV)  

    $$ SV = EV - PV $$  

    where:  
    \( PV \) = Planned Value  


    Cost Variance (CV)  

    $$ CV = EV - AC $$  

    where:  
    \( AC \) = Actual Cost  



    Performance Indices  

    **Cost Performance Index (CPI)**  
    $$ CPI = \frac{EV}{AC} $$  

    **Schedule Performance Index (SPI)**  
    $$ SPI = \frac{EV}{PV} $$  



    Bar Bending Schedule (Unit Weight of Steel)  

    $$ \text{Weight (kg)} = \frac{D^2}{162} \times L $$  

    where:  
    \( D \) = Diameter of bar in mm  
    \( L \) = Length in meters  



    Number of Bricks Required  

    $$ \text{Number of Bricks} = \frac{\text{Volume of Brickwork}}{\text{Volume of 1 Brick with Mortar}} $$  



    Material Requirement in Concrete  

    **For 1 m³ of M20 Concrete (1:1.5:3)**  

    - Cement = 320 kg  
    - Sand = 0.45 m³  
    - Aggregate = 0.90 m³  
    - Water = 160 liters  

    (Ratios may vary based on mix design.)

    Section 14) Fluid Mechanics

    Pressure Intensity  

    $$ p = \frac{F}{A} $$  

    Where:  
    \( F \) = Force (N)  
    \( A \) = Area (m²)


    Hydrostatic Pressure at Depth  

    $$ p = \rho g h $$  

    Where:  
    \( \rho \) = Density of fluid (kg/m³)  
    \( g \) = Acceleration due to gravity (9.81 m/s²)  
    \( h \) = Depth (m)


    Pascal’s Law  

    $$ \text{Pressure is equal in all directions at a point in a static fluid.} $$  

    No equation — principle statement.


    Continuity Equation  

    $$ A_1 V_1 = A_2 V_2 $$  

    Where:  
    \( A \) = Area (m²)  
    \( V \) = Velocity (m/s)


    Bernoulli’s Equation  

    $$ \frac{p}{\rho g} + \frac{V^2}{2g} + z = \text{constant} $$  

    For steady, incompressible, frictionless flow.


    Discharge (Flow Rate)  

    $$ Q = A V $$  

    Where:  
    \( Q \) = Discharge (m³/s)  
    \( A \) = Area (m²)  
    \( V \) = Velocity (m/s)


    Reynolds Number  

    $$ Re = \frac{\rho V D}{\mu} $$  

    Where:  
    \( \rho \) = Fluid density (kg/m³)  
    \( V \) = Mean velocity (m/s)  
    \( D \) = Diameter (m)  
    \( \mu \) = Dynamic viscosity (Pa·s)


    Manning’s Formula (Open Channel Flow)  

    $$ V = \frac{1}{n} R^{2/3} S^{1/2} $$  

    Where:  
    \( V \) = Velocity (m/s)  
    \( n \) = Manning’s roughness coefficient  
    \( R \) = Hydraulic radius (m)  
    \( S \) = Slope of energy line



    Chezy’s Formula  

    $$ V = C \sqrt{R S} $$  

    Where:  
    \( C \) = Chezy’s constant  
    \( R \) = Hydraulic radius (m)  
    \( S \) = Slope of energy line



    Drag Force  

    $$ F_D = C_D \frac{\rho A V^2}{2} $$  

    Where:  
    \( C_D \) = Drag coefficient  
    \( \rho \) = Fluid density (kg/m³)  
    \( A \) = Projected area (m²)  
    \( V \) = Velocity (m/s)

    Section 15) Structural Analysis

    Bending Moment — Shear Force Relation  

    $$ \frac{dM}{dx} = V(x) $$  

    Where:  
    \( M \) = Bending Moment (kNm)  
    \( V(x) \) = Shear force at section x (kN)


    Shear Force — Load Relation  

    $$ \frac{dV}{dx} = -w(x) $$  

    Where:  
    \( w(x) \) = Distributed load at section x (kN/m)


    Moment of Inertia for Rectangular Section  

    $$ I = \frac{b h^3}{12} $$  

    Where:  
    \( b \) = Breadth (mm)  
    \( h \) = Depth (mm)


    Bending Stress (Flexure Formula)  

    $$ \sigma = \frac{M y}{I} $$  

    Where:  
    \( \sigma \) = Bending stress (MPa)  
    \( M \) = Bending moment (kNm)  
    \( y \) = Distance from neutral axis (mm)  
    \( I \) = Moment of inertia (mm⁴)


    Deflection for Cantilever Beam (Point Load at Free End)  

    $$ \delta = \frac{P L^3}{3 E I} $$  

    Where:  
    \( \delta \) = Deflection (mm)  
    \( P \) = Point load (kN)  
    \( L \) = Length of cantilever (mm)  
    \( E \) = Modulus of elasticity (MPa)  
    \( I \) = Moment of inertia (mm⁴)


    Deflection for Simply Supported Beam (Central Point Load)  

    $$ \delta = \frac{P L^3}{48 E I} $$  


    Slope at Free End of Cantilever (Point Load)  

    $$ \theta = \frac{P L^2}{2 E I} $$  


    Moment Area Theorem (First Theorem)  

    $$ \theta_{AB} = \frac{Area \ of \ M/EI \ diagram \ between \ A \ and \ B}{Span} $$  


    Moment Area Theorem (Second Theorem)  

    $$ \delta_{B/A} = \text{Moment of } M/EI \text{ diagram between A and B about point B} $$  


    Principle of Superposition  

    If multiple loads act, total displacement or stress is sum of individual effects:
    $$ \Delta_{total} = \Delta_1 + \Delta_2 + \Delta_3 + \cdots $$  

    Section 16) Reinforced Cement Concrete

    Modular Ratio  

    $$ m = \frac{E_c}{E_s} $$  

    Where:  
    \( E_c \) = Modulus of elasticity of concrete (MPa)  
    \( E_s \) = Modulus of elasticity of steel (MPa)


    Moment of Resistance (Limit State of Collapse — Flexure)  

    $$ M_u = 0.36 f_{ck} b x_u (d - 0.42 x_u) $$  

    Where:  
    \( f_{ck} \) = Characteristic compressive strength of concrete (MPa)  
    \( b \) = Width of beam (mm)  
    \( x_u \) = Depth of neutral axis (mm)  
    \( d \) = Effective depth (mm)


    Limiting Depth of Neutral Axis  

    $$ \frac{x_{u,lim}}{d} = \text{depends on steel grade (as per IS 456:2000)} $$  

    Example:  
    For Fe-500  
    \( \frac{x_{u,lim}}{d} = 0.46 \)


    Lever Arm  

    $$ z = d - 0.42 x_u $$  

    In Reinforced Cement Concrete (RCC) design, the j value represents the lever arm factor, which is the distance between the centroid of the tensile reinforcement and the line of action of the compressive force in the concrete. It is used in the calculation of bending moments and stresses.

    The formula for the j value is:

    $$ j = 1 - \frac{k}{3} $$

    Where:

    • k is the neutral axis depth factor, calculated as:

      $$ k = \frac{M_u}{b \cdot d^2 \cdot f_{ck}} $$

    Here:

    • M_u = Ultimate moment of resistance
    • b = Breadth of the beam
    • d = Effective depth of the beam
    • f_{ck} = Characteristic compressive strength of concrete

    The j value typically ranges between 0.85 to 0.95 for practical RCC design, depending on the section and material properties.

    Let me know if you'd like further clarification or assistance! 😊



    Ultimate Load on Axially Loaded Short Column  

    $$ P_u = 0.4 f_{ck} A_c + 0.67 f_y A_s $$  

    Where:  
    \( A_c \) = Area of concrete (mm²)  
    \( A_s \) = Area of steel (mm²)  
    \( f_y \) = Yield strength of steel (MPa)


    Development Length  

    $$ L_d = \frac{\phi \times \sigma_s}{4 \tau_{bd}} $$  

    Where:  
    \( \phi \) = Diameter of bar (mm)  
    \( \sigma_s \) = Stress in bar at section considered (MPa)  
    \( \tau_{bd} \) = Design bond stress (MPa)


    Design Bond Stress  

    (As per IS 456:2000 — Table 21)

    Example:  
    For M20 concrete & Fe-500  
    \( \tau_{bd} = 1.6 \text{ MPa (plain bars)} \)


    Minimum Reinforcement in Slab  

    $$ A_{s,min} = \frac{0.12}{100} \times b \times D $$  

    For Fe-415/Fe-500  
    \( 0.12\% \) for mild steel  
    \( 0.12\% \) for HYSD bars


    Nominal Cover (IS 456:2000 Table 16)


    Example:  
    Slabs: 20 mm  
    Beams: 25 mm  
    Columns: 40 mm  
    Footings: 50 mm


    Shear Strength of Concrete (without shear reinforcement)  

    $$ V_c = \tau_c b d $$  

    Where:  
    \( \tau_c \) = Design shear strength of concrete (MPa)

    Axial Load Capacity  

    $$ P_u = 0.4 f_{ck} A_c + 0.67 f_y A_s $$  

    Where:  
    \( f_{ck} \) = Characteristic compressive strength of concrete (MPa)  
    \( f_y \) = Yield strength of steel (MPa)  
    \( A_c \) = Area of concrete (mm²)  
    \( A_s \) = Area of steel (mm²)



    Pure Moment Capacity (No Axial Load)  

    $$ M_u = 0.36 f_{ck} b x_u (d - 0.42 x_u) $$  

    Where:  
    \( b \) = Width of section (mm)  
    \( x_u \) = Neutral axis depth (mm)  
    \( d \) = Effective depth (mm)



    Interaction Equation for Combined Axial Load and Bending (Limit State Method — Clause 39.6, IS 456:2000)


    $$ \frac{P_u}{P_{uz}} + \frac{M_u}{M_{uz}} \leq 1.0 $$  

    Where:  
    \( P_{uz} \) = Axial load carrying capacity under zero moment  
    \( M_{uz} \) = Moment carrying capacity under zero axial load



    Moment of Resistance under Combined Load  

    If eccentricity \( e \) is more than minimum eccentricity,  

    $$ M_u = P_u \times e $$  

    Where:  
    \( e \) = Eccentricity of load = \( \frac{M_u}{P_u} \)



    Minimum Eccentricity  

    $$ e_{min} = \text{greater of } \left( \frac{L}{500} + \frac{D}{30}, 20 \right) \text{ mm} $$  

    Where:  
    \( L \) = Unsupported length (mm)  
    \( D \) = Lateral dimension of column (mm)



    Slenderness Ratio  

    $$ \lambda = \frac{l_{eff}}{r} $$  

    Where:  
    \( l_{eff} \) = Effective length (mm)  
    \( r \) = Radius of gyration (mm)



    Radius of Gyration  

    $$ r = \sqrt{\frac{I}{A}} $$  

    Where:  
    \( I \) = Moment of inertia (mm⁴)  
    \( A \) = Area (mm²)

    Load on Slab  

    $$ w = D + L $$  

    Where:  
    \( D \) = Dead load (kN/m²)  
    \( L \) = Live load (kN/m²)


    Short Span and Long Span Ratio  

    $$ \frac{L_y}{L_x} $$  

    If ratio \( \leq 2 \) → Two-way slab  
    If ratio \( > 2 \) → One-way slab  

    \( L_x \) = Shorter span (m)  
    \( L_y \) = Longer span (m)


    Moment Coefficients (from IS 456:2000 Table 26)


    - For simply supported slab with corners free to lift:
      $$ M_x = \alpha_x w L_x^2 $$
      $$ M_y = \alpha_y w L_x^2 $$  

      \( \alpha_x, \alpha_y \) = Coefficients based on span ratio


    Effective Depth (d)  

    Using Limit State Method:  
    $$ d = \sqrt{\frac{M_u}{0.138 f_{ck} b}} $$  

    Where:  
    \( M_u \) = Ultimate Moment (kNm)  
    \( f_{ck} \) = Grade of concrete (MPa)  
    \( b \) = Width (usually 1000 mm)


    Area of Steel (A_s)  

    For balanced section:
    $$ A_s = \frac{M_u}{0.87 f_y j d} $$  

    Where:  
    \( f_y \) = Grade of steel (MPa)  
    \( j \) = Lever arm factor (usually 0.9)


    Minimum Reinforcement as per IS 456:2000  

    $$ A_{s(min)} = \frac{0.12}{100} \times b \times D $$  

    \( D \) = Overall depth (mm)



    Check for Deflection Control  

    Basic span-to-depth ratio:  
    $$ \frac{L}{d} \leq \text{value from IS 456 Table 2 (generally 26-35)} $$  

    Increase or decrease this limit based on percentage tension steel and stress factor.


    Distribution Steel  

    Minimum:
    $$ A_{s(dis)} = \frac{0.12}{100} \times b \times D $$  

    Placed perpendicular to main steel.


    Spacing of Bars  

    Maximum spacing:
    - Main bars:  
      $$ \text{Spacing} \leq 3d \text{ or 300 mm (whichever is less)} $$  

    - Distribution bars:
      $$ \text{Spacing} \leq 5d \text{ or 450 mm (whichever is less)} $$  

    Factored Load on Footing  

    $$ P_u = \gamma_f \times P $$  

    Where:  
    \( P \) = Service Load (kN)  
    \( \gamma_f \) = Load factor (typically 1.5)



    Required Area of Footing  

    $$ A = \frac{P_u}{q_u} $$  

    Where:  
    \( q_u \) = Factored bearing capacity (kN/m^2)


    Size of Square Footing  

    If square footing,  
    $$ B = \sqrt{A} $$  


    Bending Moment at Face of Column  

    For two-way footing (IS 456:2000 Cl. 34.2.3.2),  
    $$ M_{xx} = \frac{q_u (B - a)^2}{8} $$  
    $$ M_{yy} = \frac{q_u (B - a)^2}{8} $$  

    Where:  
    \( a \) = Size of column in m  
    \( B \) = Size of footing in m


    Effective Depth (d) for Bending  

    $$ d = \sqrt{\frac{M_u}{0.138 f_{ck} b}} $$  

    Where:  
    \( M_u \) = Ultimate moment (kNm)  
    \( f_{ck} \) = Grade of concrete (MPa)


    One-Way Shear Check (at distance d from face)  

    Nominal shear:  

    $$ \tau_v = \frac{V_u}{b \times d} $$  

    Where:  
    \( V_u \) = Factored shear force (kN)  
    \( b \) = Width considered (m)

    Check:  

    $$ \tau_v \leq \tau_c $$  

    \( \tau_c \) from IS 456 Table 19


    Two-Way (Punching) Shear Check  

    Critical perimeter:  

    $$ u = 4 (a + d) $$  

    Nominal shear stress:  

    $$ \tau_v = \frac{V_u}{u \times d} $$  

    Check:  

    $$ \tau_v \leq \tau_c $$  

    \( \tau_c \) from IS 456 Table 20


    Area of Steel (A_s)  

    $$ A_s = \frac{M_u}{0.87 f_y j d} $$  

    \( j \) = Lever arm factor (typically 0.9)


    Minimum Reinforcement  

    As per IS 456:2000  
    $$ A_{s(min)} = \frac{0.12}{100} \times b \times D $$  

    \( D \) = Overall depth (mm)


    Development Length  

    $$ L_d = \frac{\phi \times \sigma_s}{4 \times \tau_{bd}} $$  

    Where:  
    \( \phi \) = Bar diameter (mm)  
    \( \sigma_s \) = Stress in bar (MPa)  
    \( \tau_{bd} \) = Design bond stress (MPa)

    Axial Load Carrying Capacity (Short Column under Axial Load)

    $$ P_u = 0.4 f_{ck} A_c + 0.67 f_y A_{sc} $$  

    Where:  
    \( P_u \) = Ultimate axial load (N)  
    \( f_{ck} \) = Characteristic compressive strength of concrete (N/mm²)  
    \( A_c \) = Area of concrete (mm²)  
    \( f_y \) = Yield strength of steel (N/mm²)  
    \( A_{sc} \) = Area of longitudinal steel (mm²)



     Area of Longitudinal Reinforcement  

    As per IS 456:2000:  
    Minimum reinforcement:  
    $$ A_{sc(min)} = 0.8\% \ \text{of gross cross-sectional area (A_g)} $$  

    Maximum reinforcement:  
    $$ A_{sc(max)} = 6\% \ \text{of gross cross-sectional area (A_g)} $$  



    Effective Length of Column  

    $$ L_e = k \times L $$  

    Where:  
    \( L \) = Unsupported length  
    \( k \) = Effective length factor (depends on end conditions)



    Slenderness Ratio  

    $$ \lambda = \frac{L_e}{r} $$  

    Where:  
    \( r = \sqrt{\frac{I}{A}} \) = Radius of gyration (mm)



    Minimum Eccentricity  

    $$ e_{min} = \frac{L}{500} + \frac{D}{30} \geq 20 \ mm $$  

    Where:  
    \( D \) = Depth of column (mm)



    Axial Load + Uniaxial Bending (Interaction Formula)

    $$ \frac{P_u}{P_{uz}} + \frac{M_u}{M_{uz}} \leq 1 $$  

    Where:  
    \( P_{uz} \) = Ultimate axial capacity  
    \( M_{uz} \) = Ultimate moment capacity



    Axial Load + Biaxial Bending (IS 456:2000 Cl. 39.6)

    $$ \left(\frac{M_{ux}}{M_{ux1}}\right)^{\alpha} + \left(\frac{M_{uy}}{M_{uy1}}\right)^{\alpha} \leq 1 $$  

    Where:  
    \( \alpha \) = 1 for balanced sections (usually 1-2 depending on charts)



    Spacing of Lateral Ties  

    As per IS 456:2000:  
    $$ s \leq \text{least of } \left(\frac{l}{16}, 300 \ mm, 48 \phi \right) $$  

    Where:  
    \( l \) = Least lateral dimension of column  
    \( \phi \) = Diameter of longitudinal bar



    Development Length  

    $$ L_d = \frac{\phi \times \sigma_s}{4 \times \tau_{bd}} $$  

    Where:  
    \( \phi \) = Diameter of bar (mm)  
    \( \sigma_s \) = Stress in bar (N/mm²)  
    \( \tau_{bd} \) = Design bond stress (N/mm²)


    Rise and Tread (As per IS 456:2000)  

    $$ 2R + T = 550 \text{ to } 700 \ \text{mm} $$  

    Where:  
    \( R \) = Rise (mm)  
    \( T \) = Tread (mm)

    Number of Steps  

    $$ N = \frac{H}{R} $$  

    Where:  
    \( H \) = Total floor-to-floor height (mm)


    Horizontal Span of Staircase  

    $$ L = N \times T $$  


    Length of Waist Slab  

    $$ l = \sqrt{(L)^2 + (H)^2} $$  


    Self-Weight of Waist Slab  

    $$ w_s = t \times b \times \gamma_c $$  

    Where:  
    \( t \) = Thickness of waist slab (m)  
    \( b \) = Unit width (1 m)  
    \( \gamma_c \) = Density of concrete (25 kN/m³)


    Load of Steps  

    Per step load:  
    $$ w_{step} = \frac{R \times T \times \gamma_c}{T} $$  

    Uniformly distributed load (UDL) along slope:  
    $$ w_{step} = R \times \gamma_c $$  


    Live Load (as per IS 875 Part 2)  

    Residential = 3 kN/m²  
    Public = 5 kN/m²


    Total Load per Meter on Waist Slab  

    $$ w = w_s + w_{step} + w_{LL} $$  

    \( w_{LL} \) = Live load (kN/m)


    Bending Moment at Mid-Span (Simply Supported)  

    $$ M = \frac{w l^2}{8} $$  


    Effective Depth (d) for Bending  

    $$ d = \sqrt{\frac{M_u}{0.138 f_{ck} b}} $$  

    Where:  
    \( M_u \) = Ultimate moment (kNm)


    Area of Steel (A_s)  

    $$ A_s = \frac{M_u}{0.87 f_y j d} $$  

    \( j \) = 0.9 (lever arm factor)


    Minimum Reinforcement  

    As per IS 456:2000  
    $$ A_{s(min)} = \frac{0.12}{100} \times b \times D $$  

    \( D \) = Overall depth (mm)

    Development Length  

    $$ L_d = \frac{\phi \times \sigma_s}{4 \times \tau_{bd}} $$  

    \( \phi \) = Bar diameter (mm)  
    \( \sigma_s \) = Stress in bar (MPa)  
    \( \tau_{bd} \) = Design bond stress (MPa)

    Active Earth Pressure (Rankine’s Theory)

    $$ P_a = \frac{1}{2} K_a \gamma H^2 $$  

    Where:  
    \( K_a = \frac{1 - \sin \phi}{1 + \sin \phi} \)  

    \( \gamma \) = Unit weight of soil (kN/m³)  
    \( H \) = Height of retaining wall (m)  
    \( \phi \) = Angle of internal friction of soil (degrees)



    Passive Earth Pressure (for stability checks)

    $$ P_p = \frac{1}{2} K_p \gamma H^2 $$  

    Where:  
    \( K_p = \frac{1 + \sin \phi}{1 - \sin \phi} \)



    Factor of Safety Against Overturning  

    $$ FS_{overturning} = \frac{\text{Sum of resisting moments}}{\text{Sum of overturning moments}} $$  

    Minimum recommended value: \( \geq 1.5 \)



    Factor of Safety Against Sliding  

    $$ FS_{sliding} = \frac{\text{Resisting force}}{\text{Driving force}} $$  

    Resisting Force:  
    $$ R_f = \mu W + P_p $$  

    Where:  
    \( \mu \) = Coefficient of friction (commonly 0.5 for concrete-soil)  
    \( W \) = Self-weight of wall + weight of soil above heel  
    \( P_p \) = Passive earth pressure  

    Minimum recommended value: \( \geq 1.5 \)



    Base Pressure (Bearing Pressure under Base)

    Maximum pressure at toe:  
    $$ q_{max} = \frac{W}{B} \left(1 + \frac{6M}{W B^2}\right) $$  

    Minimum pressure at heel:  
    $$ q_{min} = \frac{W}{B} \left(1 - \frac{6M}{W B^2}\right) $$  

    Where:  
    \( W \) = Total vertical load (kN)  
    \( B \) = Base width (m)  
    \( M \) = Moment about toe (kNm)



    Stability Against Bearing Failure  

    Check:  
    $$ q_{max} \leq q_{allowable} $$  

    Where:  
    \( q_{allowable} \) = Safe bearing capacity of soil (kN/m²)



    Stability Check for Sliding  

    Factor of safety as per IS 456:2000:  
    $$ FS_{sliding} \geq 1.5 $$  



    Critical Section for Bending Moment  

    Heel slab:  
    At wall face  
    $$ M_u = \frac{q \times x^2}{2} $$  

    Toe slab:  
    At wall face  
    $$ M_u = \frac{q \times x^2}{2} $$  

    Where:  
    \( q \) = Soil pressure under slab  
    \( x \) = Distance from critical section



    Critical Section for Shear  

    One effective depth (d) away from wall face on both heel and toe slabs.



    Minimum Reinforcement (as per IS 456:2000)

    For distribution steel:  
    $$ A_{st(min)} = 0.12\% \ \text{of gross cross-sectional area for Fe 415} $$

    For temperature & shrinkage reinforcement.



    Development Length  

    $$ L_d = \frac{\phi \times \sigma_s}{4 \times \tau_{bd}} $$  

    Same as in RCC beams and slabs.


    Ultimate Load Carrying Capacity of Single Pile in Cohesive Soil (Clay)

    $$ Q_u = q_u A_p + \alpha c A_s $$  

    Where:  
    \( q_u = 9c \) (as per IS 2911)  
    \( A_p \) = Cross-sectional area of pile tip (m²)  
    \( \alpha \) = Adhesion factor (from IS 2911 table, 0.3–1.0)  
    \( c \) = Cohesion of soil (kN/m²)  
    \( A_s \) = Surface area of pile shaft (m²)



    Ultimate Load Carrying Capacity of Single Pile in Cohesionless Soil (Sand)

    $$ Q_u = q_b A_p + \sum (K \sigma'_v \tan \delta \times A_s) $$  

    Where:  
    \( q_b = N_q \sigma'_v \) at pile tip  
    \( K \) = Lateral earth pressure coefficient (active/passive)  
    \( \sigma'_v \) = Effective overburden pressure at respective depths  
    \( \delta \) = Angle of wall friction  
    \( A_s \) = Surface area of pile shaft embedded in that soil layer  
    \( N_q \) = Bearing capacity factor (from IS 2911)



    Allowable Load on Pile  

    $$ Q_{allowable} = \frac{Q_u}{FOS} $$  

    Typical FOS: 2.5 for static loads.



    Pile Settlement Under Load  

    Immediate Settlement:  
    $$ S_i = \frac{Q}{A_p E_s} \times (1 - \mu^2) \times L $$  

    Where:  
    \( Q \) = Applied load (kN)  
    \( E_s \) = Modulus of elasticity of soil (kN/m²)  
    \( \mu \) = Poisson’s ratio of soil  
    \( L \) = Length of pile embedded in soil (m)



    Pile Group Efficiency (Spacing Effects) — Converse-Labarre Formula  

    $$ \eta_g = \frac{n}{m} \left[1 - \frac{\theta}{90} \right] $$  

    Where:  
    \( n \) = Number of piles in a row  
    \( m \) = Number of rows  
    \( \theta \) = Angle between adjacent piles in degrees

    (for square/rectangular patterns)



    Critical Spacing of Piles  

    Minimum clear spacing (as per IS 2911 Part 1)  
    For friction piles:  
    $$ S_{min} \geq 2.5 \times D $$  

    For end bearing piles:  
    $$ S_{min} \geq 3.0 \times D $$  

    Where:  
    \( D \) = Diameter of pile



    Development Length for Pile Reinforcement  

    $$ L_d = \frac{\phi \times \sigma_s}{4 \times \tau_{bd}} $$  

    Same formula as beams & columns (as per IS 456:2000)



    Lateral Load Capacity of Piles (Using Broms’ Method for Short Piles in Cohesive Soil)

    Ultimate lateral resistance:  
    $$ P_u = 2 P_p + M_p / h $$  

    Where:  
    \( P_p \) = Passive resistance at pile head  
    \( M_p \) = Moment capacity of pile  
    \( h \) = Height of load application



    Pile Capacity from Load Test  

    As per IS 2911, Safe load is taken as:  
    - Load corresponding to 12 mm net settlement  
    - Load at which settlement increases disproportionately  

    Take lesser of the two.



    Minimum Reinforcement in Pile (as per IS 2911)

    For compression piles:  
    $$ A_{st(min)} = 0.4\% \ \text{of cross-sectional area of pile shaft} $$  

    For tension piles:  
    $$ A_{st(min)} = 0.8\% $$  


    Minimum Thickness of Pile Cap (as per IS 456:2000, Cl. 34.1.3)

    $$ t_{min} \geq 2 \times d_{pile} $$  

    Where:  
    \( t_{min} \) = Minimum thickness of pile cap  
    \( d_{pile} \) = Diameter of pile



    Load Distribution from Column to Piles (Assuming Rigid Pile Cap)

    Load on each pile:

    $$ P_{pile} = \frac{P_{col}}{n} $$  

    Where:  
    \( P_{pile} \) = Load on each pile  
    \( P_{col} \) = Load from column  
    \( n \) = Number of piles



    Two-way (Punching) Shear at Critical Section (at \( d/2 \) from face of pile)

    Nominal shear stress:

    $$ \tau_v = \frac{V_u}{b_0 d} $$  

    Where:  
    \( V_u \) = Ultimate shear force  
    \( b_0 \) = Perimeter at \( d/2 \) from face of pile  
    \( d \) = Effective depth of pile cap



    Check:  
    If \( \tau_v \leq \tau_c \) (IS 456:2000 values for concrete grade)



    One-way (Beam) Shear at Critical Section (at ‘d’ from face of pile)

    Nominal shear stress:

    $$ \tau_v = \frac{V_u}{b d} $$  

    Where:  
    \( b \) = Width of pile cap at section considered



    Bending Moment at Face of Column  

    For cantilever action (from face of pile to pile center):

    $$ M_u = \frac{P_{pile} \times e^2}{2} $$  

    Where:  
    \( e \) = Eccentricity from column face to pile center  

    Design reinforcement for this moment.



    Area of Steel for Bending Moment  

    $$ A_{st} = \frac{M_u}{0.87 f_y \times j d} $$  

    Where:  
    \( f_y \) = Yield strength of steel  
    \( j \approx 0.9 \)



    Development Length of Reinforcement  

    Same as IS 456:2000  

    $$ L_d = \frac{\phi \times \sigma_s}{4 \times \tau_{bd}} $$  

    Where:  
    \( \phi \) = Bar diameter  
    \( \sigma_s \) = Design stress in steel  
    \( \tau_{bd} \) = Design bond stress



    Pile Cap Plan Dimension (as per geometry)

    For 2-pile cap:

    Length = Width =  
    $$ 2 \times (edge\ spacing) + d_{pile} $$  

    For 4-pile cap:  
    Square/rectangular based on pile arrangement and clear spacing as per IS 2911.



    Minimum Reinforcement (as per IS 456:2000)

    For pile cap depth up to 1 m:  
    $$ A_{st(min)} = 0.12\% \times b \times D $$  

    For depth over 1 m:  
    $$ A_{st(min)} = 0.15\% \times b \times D $$  

    Where:  
    \( b \) = Breadth of section  
    \( D \) = Overall depth



    Clear Cover to Main Reinforcement (as per IS 456:2000)

    For pile caps:  
    $$ \text{Clear Cover} \geq 50 \ mm $$  



    Design of RCC water tank

    Design Water Pressure  

    At any depth \( h \):

    $$ p = w \times h $$  

    Where:  
    \( p \) = Water pressure (kN/m²)  
    \( w \) = Unit weight of water (9.81 kN/m³)  
    \( h \) = Depth from water surface (m)



    Hoop Tension (for circular tank walls)  

    At depth \( h \):

    $$ T = \frac{p \times D}{2} $$  

    Where:  
    \( T \) = Hoop tension (kN/m)  
    \( D \) = Internal diameter of tank (m)



     Vertical Moment at Base of Wall (Fixed Base)  

    For circular tank:

    $$ M_v = \frac{p \times D^2}{16} $$  

    Where:  
    \( M_v \) = Vertical bending moment (kNm/m)



    Thickness of Base Slab  

    Empirical formula (as per IS 3370):

    $$ t_{base} = \frac{D}{25} \ to \ \frac{D}{30} $$  

    Where:  
    \( t_{base} \) = Thickness of base slab (m)



    Bending Moment in Rectangular Tank Wall (Fixed at base, free at top)

    Maximum moment:

    $$ M = \frac{p \times H^2}{8} $$  

    Where:  
    \( H \) = Height of tank (m)



    Minimum Reinforcement (as per IS 3370 Part 2)

    For tank walls and base slabs:

    $$ A_{st(min)} = 0.3\% \times b \times D $$  

    Where:  
    \( b \) = Breadth (mm)  
    \( D \) = Depth/thickness (mm)



    Crack Width Control (Water-tight structures as per IS 456:2000)

    Maximum bar spacing:

    $$ s_{max} \leq 300 \ mm $$  

    And cover:

    $$ c_{min} \geq 25 \ mm $$  



    Development Length  

    As per IS 456:2000:

    $$ L_d = \frac{\phi \times \sigma_s}{4 \times \tau_{bd}} $$  

    Where:  
    \( \phi \) = Bar diameter  
    \( \sigma_s \) = Design stress in steel  
    \( \tau_{bd} \) = Design bond stress



    Capacity of Circular Water Tank  

    $$ V = \frac{\pi D^2 H}{4} $$  

    Where:  
    \( V \) = Volume of tank (m³)  
    \( D \) = Internal diameter (m)  
    \( H \) = Water depth (m)



    Capacity of Rectangular Water Tank  

    $$ V = L \times B \times H $$  

    Where:  
    \( L \) = Length (m)  
    \( B \) = Breadth (m)  
    \( H \) = Water depth (m)


    Raft Foundation

    Net Upward Pressure on Soil  

    $$ q_n = \frac{P}{A} $$  

    Where:  
    \( q_n \) = Net soil pressure (kN/m²)  
    \( P \) = Total load from columns (kN)  
    \( A \) = Area of raft foundation (m²)



    Safe Bearing Capacity Check  

    Ensure:

    $$ q_n \leq q_{safe} $$  

    Where:  
    \( q_{safe} \) = Safe bearing capacity of soil (kN/m²)



    Bending Moment at Center of Rectangular Raft  

    $$ M_x = \frac{q_n L_x^2}{8} $$  

    $$ M_y = \frac{q_n L_y^2}{8} $$  

    Where:  
    \( L_x, L_y \) = Span lengths in x and y directions (m)



    Effective Depth for One-Way Shear  

    $$ \tau_v = \frac{V}{b \times d} $$  

    Where:  
    \( \tau_v \) = Shear stress (N/mm²)  
    \( V \) = Shear force (N)  
    \( b \) = Breadth (mm)  
    \( d \) = Effective depth (mm)

    Allowable check:

    $$ \tau_v \leq \tau_c $$  

    \( \tau_c \) = Permissible shear stress (IS 456:2000)



    Two-Way (Punching) Shear Around Column  

    Critical perimeter:

    $$ u = 2 \times (c + d) $$  

    Shear stress:

    $$ \tau_v = \frac{V_u}{u \times d} $$  

    Check:

    $$ \tau_v \leq \tau_c $$  

    Where:  
    \( c \) = Column dimension (mm)



    Reinforcement for Bending Moment  

    Area of steel:

    $$ A_{st} = \frac{M}{0.87 f_y \times j \times d} $$  

    Where:  
    \( M \) = Moment (Nmm)  
    \( f_y \) = Yield strength of steel (N/mm²)  
    \( j \approx 0.9 \)



    Minimum Reinforcement (IS 456:2000)  

    $$ A_{st(min)} = 0.12\% \times b \times D $$  

    For Fe415 steel in slabs.



    Raft Slab Thickness (Empirical)  

    For moderate loading:

    $$ t \geq \frac{L}{30} $$  

    Where:  
    \( L \) = Shorter span (m)



    Settlement Check  

    Total settlement:

    $$ S = \frac{q_n B (1 - \mu^2)}{E_s} \times I_s $$  

    Where:  
    \( \mu \) = Poisson's ratio  
    \( E_s \) = Modulus of elasticity of soil (kN/m²)  
    \( I_s \) = Influence factor (from IS 8009)



    Bearing Pressure Distribution  

    At any point:

    $$ q = q_n \pm \frac{M_x}{I_x} \times y \pm \frac{M_y}{I_y} \times x $$  

    Where:  
    \( M_x, M_y \) = Moments about respective axes (kNm)  
    \( I_x, I_y \) = Moment of inertia of raft area (m⁴)



    Section 17) Prestressed Concrete (PSC)

    Loss of Prestress due to Elastic Shortening  

    $$ \Delta f_{es} = m \times \frac{P}{A} $$  

    Where:  
    \( m \) = Modular ratio  
    \( P \) = Prestressing force (N)  
    \( A \) = Area of concrete section (mm²)


    Loss of Prestress due to Creep of Concrete  

    $$ \Delta f_{cr} = f_c \times C_c $$  

    Where:  
    \( f_c \) = Stress in concrete at tendon level (MPa)  
    \( C_c \) = Creep coefficient  


    Loss of Prestress due to Shrinkage of Concrete  

    $$ \Delta f_{sh} = E_s \times \varepsilon_{sh} $$  

    Where:  
    \( E_s \) = Modulus of elasticity of steel (MPa)  
    \( \varepsilon_{sh} \) = Shrinkage strain


    Loss of Prestress due to Relaxation of Steel  

    As per IS 1343, depends on type of steel and initial stress.  
    For example:  
    $$ \Delta f_{relax} = \text{(5\% to 8\% of initial prestress)} $$


    Total Loss of Prestress  

    $$ \text{Total Loss} = \Delta f_{es} + \Delta f_{cr} + \Delta f_{sh} + \Delta f_{relax} $$  


    Final Prestress in Tendon  

    $$ f_p = f_{pi} - \text{Total Loss} $$  

    Where:  
    \( f_{pi} \) = Initial prestress (MPa)


    Ultimate Moment Capacity (Limit State)  

    $$ M_u = f_{pu} \times A_p \times \left( d - \frac{A_p f_{pu}}{2 f_{ck} b} \right) $$  

    Where:  
    \( f_{pu} \) = Ultimate stress in tendon (MPa)  
    \( A_p \) = Area of prestressing steel (mm²)  
    \( d \) = Effective depth (mm)  
    \( b \) = Width of section (mm)  
    \( f_{ck} \) = Characteristic strength of concrete (MPa)


    Eccentricity of Prestressing  

    $$ e = \frac{M}{P} $$  

    Where:  
    \( M \) = Moment (kNm)  
    \( P \) = Prestressing force (kN)

    Section 18) Bridge Engineering

    📖 Cross Drainage Work

    Discharge by Manning’s Formula

    $$ Q = \frac{1}{n} A R^{2/3} S^{1/2} $$

    Where: \( Q \) = Discharge (m³/s) \( n \) = Manning’s roughness coefficient \( A \) = Flow area (m²) \( R \) = Hydraulic radius (m) \( S \) = Bed slope

    Hydraulic Radius (for any section)

    $$ R = \frac{A}{P} $$

    Where: \( P \) = Wetted perimeter (m)

    Area of Rectangular Waterway

    $$ A = b \times d $$

    Where: \( b \) = Bottom width (m) \( d \) = Depth of flow (m)

    Wetted Perimeter for Rectangular Section

    $$ P = b + 2d $$

    Velocity by Chezy’s Formula

    $$ V = C \sqrt{R S} $$

    Where: \( C \) = Chezy’s constant

    Discharge through a Culvert (Rectangular)

    $$ Q = A \times V $$

    Head Loss through Culvert

    $$ h_L = K \times \frac{V^2}{2g} $$

    Where: \( K \) = Loss coefficient \( g \) = 9.81 m/s²

    Maximum Permissible Velocity (Non-Erosive)

    $$ V_{max} = \text{as per IS 4745:1968 depending on soil type} $$

    Flood Discharge Estimation (Rational Formula)

    $$ Q = C \times I \times A $$

    Where: \( C \) = Runoff coefficient \( I \) = Rainfall intensity (mm/hr) \( A \) = Catchment area (hectares)

    Freeboard Provision

    $$ F = H_{max} \times f $$

    Where: \( H_{max} \) = Maximum afflux/head (m) \( f \) = Freeboard factor (typically 0.25 to 0.5)

    Neoprene Bearing Design Formulas

    Bearing Pressure

    $$ p = \frac{P}{A} $$

    Where:
    \( p \) = Bearing pressure (MPa)
    \( P \) = Vertical load (kN)
    \( A \) = Loaded area (mm^2)

    Shape Factor (S)

    $$ S = \frac{b \times d}{2t (b + d)} $$

    Where:
    \( b, d \) = Plan dimensions of bearing (mm)
    \( t \) = Thickness of elastomeric layer (mm)

    Shear Strain

    $$ \gamma = \frac{\Delta}{t} $$

    Where:
    \( \gamma \) = Shear strain
    \( \Delta \) = Horizontal displacement (mm)
    \( t \) = Total elastomer thickness (mm)

    Shear Stress

    $$ \tau = \frac{H}{A} $$

    Where:
    \( \tau \) = Shear stress (MPa)
    \( H \) = Horizontal load (kN)
    \( A \) = Loaded area (mm^2)

    Rotation Capacity

    $$ \theta = \frac{6 \Delta}{t^2} $$

    Where:
    \( \theta \) = Rotation (radians)
    \( \Delta \) = Horizontal displacement (mm)
    \( t \) = Elastomer thickness (mm)

    Compressive Stress Check

    $$ p_{actual} \leq p_{allowable} $$

    Where:
    \( p_{actual} \) = Actual bearing pressure (MPa)
    \( p_{allowable} \) = Permissible pressure (MPa)

    Minimum Plan Area Required

    $$ A = \frac{P}{p_{allowable}} $$

    Where:
    \( A \) = Required plan area (mm^2)

    Total Horizontal Movement

    $$ \Delta_{total} = \Delta_{creep} + \Delta_{shrinkage} + \Delta_{thermal} $$

    All values in mm.

    Permissible Shear Strain Limit

    $$ \gamma \leq 0.7 $$

    As per IRC:83 Part II.

    Shape Factor Requirement

    $$ S \geq 2.5 $$

    As per IRC:83 Cl. 5.5.


    Bridge Expansion Joint

    Total Horizontal Movement

    $$ \Delta_{total} = \Delta_{creep} + \Delta_{shrinkage} + \Delta_{thermal} $$

    All values in mm.

    Thermal Movement

    $$ \Delta_{thermal} = L \times \alpha \times \Delta T $$

    Where:
    \( L \) = Length of bridge deck (mm)
    \( \alpha \) = Coefficient of thermal expansion (per °C)
    \( \Delta T \) = Temperature variation (°C)

    Creep Movement

    $$ \Delta_{creep} = L \times C_{cr} $$

    Where:
    \( C_{cr} \) = Creep strain (typically 0.0003–0.0005)

    Shrinkage Movement

    $$ \Delta_{shrinkage} = L \times C_{sh} $$

    Where:
    \( C_{sh} \) = Shrinkage strain (typically 0.0002–0.0003)

    Minimum Gap Width at Installation

    $$ g = \Delta_{total} + 2 \times \Delta_{construction} $$

    Where:
    \( \Delta_{construction} \) = Allowance for construction tolerance (mm)

    Expansion Joint Gap for Temperature Effect

    $$ g_{temp} = L \times \alpha \times \Delta T $$

    At one end of the deck, values in mm.

    Allowable Joint Gap as per IRC:83

    $$ g_{max} \leq g_{allowable} $$

    As per IRC:83 guidelines depending on movement capacity.

    Sealant Movement Capacity Check

    $$ M_{capacity} \geq \frac{\Delta_{total}}{2} $$

    Where:
    \( M_{capacity} \) = Movement capacity of sealant (mm)

    Bearing Movement & Joint Synchronization

    $$ \Delta_{joint} \geq \Delta_{bearing} $$

    Expansion joint movement must match or exceed bearing movement.


    Bridge Approach Slab Design



    Length of Approach Slab (IRC: SP:58 & IRC:87)

    $$ L = (5 \text{ to } 7) \times h $$

    Where:
    \( h \) = Thickness of road crust at abutment face (m)

    Dead Load of Approach Slab

    $$ W_{dead} = \gamma_c \times b \times t \times 1 $$

    Where:
    \( \gamma_c \) = Density of concrete (kN/m³)
    \( b \) = Width of slab (m)
    \( t \) = Thickness of slab (m)

    Live Load Bending Moment (as simply supported slab)

    $$ M_{LL} = \frac{W \times L}{4} $$

    Where:
    \( W \) = Live load (kN)
    \( L \) = Span of slab (m)

    Dead Load Bending Moment

    $$ M_{DL} = \frac{W_{dead} \times L^2}{8} $$

    Total Bending Moment

    $$ M_{total} = M_{DL} + M_{LL} $$

    Required Effective Depth (d)

    $$ d = \sqrt{\frac{M_{total} \times 10^6}{R \times b}} $$

    Where:
    \( R \) = Moment of resistance factor (N/mm²)
    \( b \) = Width of slab (mm)

    Area of Steel (Main Reinforcement)

    $$ A_{st} = \frac{M_{total} \times 10^6}{0.87 \times f_y \times j \times d} $$

    Where:
    \( f_y \) = Yield strength of steel (N/mm²)
    \( j \) = Lever arm factor (≈0.9)

    Distribution Steel (IRC:21)

    $$ A_{sd} = 0.12 \times t \times 1000 $$

    Where:
    \( t \) = Slab thickness (mm)

    Factor of Safety against Settlement Differential

    $$ FS = \frac{q_{allow}}{q_{actual}} $$

    Where:
    \( q_{allow} \) = Allowable bearing capacity (kN/m²)
    \( q_{actual} \) = Actual bearing pressure under slab (kN/m²)

    Reinforcement Spacing

    $$ s = \frac{1000 \times A_{bar}}{A_{st}} $$

    Where:
    \( A_{bar} \) = Area of one bar (mm²)


    Well Foundation Stability Formula Pack

    Vertical Load on Well

    $$ P = DL + LL + WL $$

    Where:
    \( DL \) = Dead Load (kN)
    \( LL \) = Live Load (kN)
    \( WL \) = Wind Load (kN)

    Lateral Earth Pressure (Rankine's Theory)

    $$ P_a = \frac{1}{2} \times K_a \times \gamma \times H^2 $$

    Where:
    \( K_a \) = Coefficient of active earth pressure
    \( \gamma \) = Unit weight of soil (kN/m³)
    \( H \) = Depth of embedment (m)

    Passive Earth Pressure (for Stability)

    $$ P_p = \frac{1}{2} \times K_p \times \gamma \times D^2 $$

    Where:
    \( K_p \) = Coefficient of passive earth pressure
    \( D \) = Depth of foundation (m)

    Factor of Safety against Overturning

    $$ FS_{OT} = \frac{M_{resisting}}{M_{overturning}} $$

    Factor of Safety against Sliding

    $$ FS_{SL} = \frac{\mu \times (W + P_p)}{P_a + H_{water}} $$

    Where:
    \( \mu \) = Coefficient of friction between base and soil
    \( H_{water} \) = Water current force (if any) (kN)

    Vertical Bearing Capacity Check

    $$ q_{max} = \frac{P}{A} \left(1 + \frac{6e}{B} \right) $$

    Where:
    \( A \) = Base area (m²)
    \( e \) = Eccentricity (m)
    \( B \) = Base width (m)

    Eccentricity Check

    $$ e = \frac{M_{resisting} - M_{overturning}}{P} $$

    Should satisfy:
    \( e \leq \frac{B}{6} \)

    Scour Depth Calculation (Lacey’s Formula)

    $$ d_s = 0.473 \left( \frac{Q}{f} \right)^{1/3} $$

    Where:
    \( Q \) = Design discharge (m³/s)
    \( f \) = Lacey’s silt factor

    Grip Length (Minimum Embedment Depth)

    $$ D \geq 1.33 \times d_s $$

    Where:
    \( d_s \) = Maximum scour depth (m)



    Hydrograph Formula Pack

    Peak Discharge from Rational Method

    $$ Q = C \times I \times A $$

    Where:
    \( Q \) = Peak discharge (m³/s)
    \( C \) = Runoff coefficient
    \( I \) = Rainfall intensity (mm/hr)
    \( A \) = Catchment area (hectares)

    Unit Hydrograph Principle

    $$ Q = \frac{R}{T} $$

    Where:
    \( Q \) = Direct runoff (m³/s)
    \( R \) = Rainfall excess (mm)
    \( T \) = Time base (hr)

    Runoff Volume (Direct Runoff Hydrograph)

    $$ V = \frac{\sum (Q \times \Delta t)}{1000} $$

    Where:
    \( V \) = Volume (ha-m)
    \( Q \) = Discharge (m³/s)
    \( \Delta t \) = Time interval (s)

    Time of Concentration (Kirpich’s Formula)

    $$ T_c = 0.0195 \times L^{0.77} \times S^{-0.385} $$

    Where:
    \( T_c \) = Time of concentration (min)
    \( L \) = Length of channel (m)
    \( S \) = Slope of channel bed (m/m)

    Baseflow Separation (Straight-Line Method)

    $$ Q_b = \text{Intercept at recession limb start and end connected linearly} $$

    Synthetic Unit Hydrograph (Snyder’s Method)

    $$ Q_p = C_p \times A^{0.75} / T_p $$

    Where:
    \( Q_p \) = Peak discharge (m³/s)
    \( C_p \) = Peak coefficient
    \( A \) = Catchment area (km²)
    \( T_p \) = Time to peak (hr)

    Lag Time (Snyder’s Method)

    $$ T_l = C_t \times (L \times L_c)^{0.3} $$

    Where:
    \( T_l \) = Lag time (hr)
    \( C_t \) = Time constant
    \( L \) = Stream length (km)
    \( L_c \) = Distance from outlet to centroid (km)

    Peak Discharge of Flood Hydrograph

    $$ Q_p = \frac{V}{T_r} $$

    Where:
    \( Q_p \) = Peak flood discharge (m³/s)
    \( V \) = Total runoff volume (m³)
    \( T_r \) = Time to recession (hr)

    📚 Flood Routing Formula Pack

    Continuity Equation

    $$ \frac{dS}{dt} = I - O $$

    Where: \( S \) = Storage (m³) \( I \) = Inflow (m³/s) \( O \) = Outflow (m³/s)

    Muskingum Routing Equation

    $$ O_2 = C_0 I_2 + C_1 I_1 + C_2 O_1 $$

    Where: \( O_2 \) = Outflow at current time step \( I_1, I_2 \) = Inflow at previous and current time steps \( O_1 \) = Outflow at previous time step \( C_0, C_1, C_2 \) = Muskingum routing coefficients

    Muskingum Coefficients

    $$ C_0 = \frac{-K X + 0.5 \Delta t}{K (1-X) + 0.5 \Delta t} $$
    $$ C_1 = \frac{K X + 0.5 \Delta t}{K (1-X) + 0.5 \Delta t} $$
    $$ C_2 = \frac{K (1-X) - 0.5 \Delta t}{K (1-X) + 0.5 \Delta t} $$

    Where: \( K \) = Storage constant (time) \( X \) = Weighting factor (0 ≤ X ≤ 0.5) \( \Delta t \) = Time step (s)

    Storage-Discharge Relationship (Reservoir Routing)

    $$ S = f(O) $$

    Where: \( S \) = Storage (m³) \( O \) = Outflow (m³/s)

    Modified Puls Method

    $$ \frac{(2S_2 + O_2 \Delta t)}{2} = \frac{(2S_1 + O_1 \Delta t)}{2} + \frac{\Delta t}{2}(I_1 + I_2) $$

    Where: \( S_1, S_2 \) = Storage at previous and current steps \( O_1, O_2 \) = Outflow at previous and current steps \( I_1, I_2 \) = Inflow at previous and current steps \( \Delta t \) = Time interval

    📖 Hydrograph Analysis Formula Pack

    Runoff Volume (Direct Runoff Hydrograph - DRH)

    $$ V = \frac{A \times R}{1000} $$

    Where: \( V \) = Runoff volume (m³) \( A \) = Catchment area (km²) \( R \) = Rainfall excess (mm)

    Peak Discharge by Rational Formula

    $$ Q = 0.278 \times C \times I \times A $$

    Where: \( Q \) = Peak discharge (m³/s) \( C \) = Runoff coefficient \( I \) = Rainfall intensity (mm/hr) \( A \) = Area (km²)

    Time of Concentration (Kirpich’s Formula)

    $$ T_c = 0.0195 \times L^{0.77} \times S^{-0.385} $$

    Where: \( T_c \) = Time of concentration (minutes) \( L \) = Maximum flow length (m) \( S \) = Slope of catchment (m/m)

    Unit Hydrograph Ordinates (UH Method)

    $$ Q_u = \frac{V}{T_r} $$

    Where: \( Q_u \) = Discharge per unit rainfall depth (m³/s) \( V \) = Runoff volume (m³) \( T_r \) = Duration of effective rainfall (hr)

    Base Flow Separation (Straight Line Method)

    Draw a straight line joining the start and end of baseflow on the hydrograph to separate surface runoff.

    Peak Discharge by Snyder’s Synthetic Unit Hydrograph

    $$ Q_p = C_p \times A^{0.75} / T_p $$

    Where: \( Q_p \) = Peak discharge (m³/s) \( C_p \) = Regional constant \( A \) = Area (km²) \( T_p \) = Time to peak (hr)

    Lag Time (Snyder’s Method)

    $$ T_l = C_t \times (L L_c)^{0.3} $$

    Where: \( T_l \) = Lag time (hr) \( C_t \) = Coefficient based on region \( L \) = Main stream length (km) \( L_c \) = Distance from catchment outlet to centroid (km)


    Section 19) Reservoirs

    📖 Reservoir Capacity Curves

    Volume Between Two Elevations

    $$ V = \frac{(A_1 + A_2)}{2} \times (H_2 - H_1) $$

    Where: \( V \) = Volume between two contours (m³) \( A_1, A_2 \) = Water spread areas at respective elevations (m²) \( H_2 - H_1 \) = Elevation difference (m)

    Total Storage Capacity (Summation Method)

    $$ V_{total} = \sum \frac{(A_n + A_{n+1})}{2} \times (H_{n+1} - H_n) $$

    Where: \( V_{total} \) = Total capacity up to FRL (m³) \( A_n \) = Area at elevation \( H_n \)

    Area-Elevation Curve Equation (Assuming Parabolic Relation)

    $$ A = k \times H^2 $$

    Where: \( A \) = Area at elevation H (m²) \( k \) = Constant based on reservoir geometry \( H \) = Elevation (m)

    Reservoir Capacity-Elevation Curve Equation (Using Area-Elevation Curve)

    $$ V = \frac{k}{3} \times (H^3 - H_0^3) $$

    Where: \( V \) = Volume between elevations \( H_0 \) and \( H \) (m³)

    Reservoir Capacity Percentage (for a given Elevation)

    $$ \% \, \text{Full} = \frac{V_H}{V_{FRL}} \times 100 $$

    Where: \( V_H \) = Volume up to elevation H (m³) \( V_{FRL} \) = Total capacity up to Full Reservoir Level (FRL) (m³)

    Storage Capacity by Trapezoidal Rule

    $$ V = \sum \frac{(A_i + A_{i+1})}{2} \times \Delta h $$

    Where: \( \Delta h \) = Elevation difference between successive contours (m)

    Storage Capacity by Simpson’s Rule (if even number of intervals)

    $$ V = \frac{\Delta h}{3} \left[ A_0 + 4(A_1 + A_3 + A_5 + \ldots) + 2(A_2 + A_4 + A_6 + \ldots) + A_n \right] $$

    Where: \( n \) = Number of intervals (even) \( \Delta h \) = Elevation difference (m)

    📖 Spillway Design

    Discharge over an Ogee Spillway

    $$ Q = C L H_e^{1.5} $$

    Where: \( Q \) = Discharge (m³/s) \( C \) = Discharge coefficient \( L \) = Effective crest length (m) \( H_e \) = Total head over the spillway crest (m)

    Total Head over Crest

    $$ H_e = H + \frac{V^2}{2g} $$

    Where: \( H \) = Static head (m) \( V \) = Approach velocity (m/s) \( g \) = Acceleration due to gravity (9.81 m/s²)

    Effective Length of Spillway (including pier and abutment contraction corrections)

    $$ L = L' - 2 N K_p H_e - K_a H_e $$

    Where: \( L' \) = Gross length of spillway crest (m) \( N \) = Number of piers \( K_p \) = Pier contraction coefficient \( K_a \) = Abutment contraction coefficient \( H_e \) = Total head over crest (m)

    Energy Dissipation – Tail Water Depth (For Hydraulic Jump)

    $$ y_2 = \frac{y_1}{2} \left( \sqrt{1 + 8 Fr_1^2} - 1 \right) $$

    Where: \( y_1 \) = Initial depth before jump (m) \( Fr_1 \) = Froude number before jump \( y_2 \) = Depth after jump (m)

    Froude Number at Spillway Toe

    $$ Fr_1 = \frac{V_1}{\sqrt{g y_1}} $$

    Where: \( V_1 \) = Velocity at toe (m/s) \( y_1 \) = Depth before jump (m)

    Spillway Capacity for Design Flood (Simplified)

    $$ Q = C_d L H^{1.5} $$

    Where: \( C_d \) = Discharge coefficient (may vary with head & shape) \( L \) = Spillway length (m) \( H \) = Head over crest (m)

    📖 Canal Escape

    Discharge Capacity of Canal Escape

    $$ Q = A \times V $$

    Where: \( Q \) = Discharge capacity (m³/s) \( A \) = Flow area (m²) \( V \) = Velocity of flow (m/s)

    Flow Area of Rectangular Escape Channel

    $$ A = b \times d $$

    Where: \( b \) = Bottom width (m) \( d \) = Depth of flow (m)

    Velocity by Chezy’s Formula

    $$ V = C \sqrt{R S} $$

    Where: \( C \) = Chezy’s constant \( R \) = Hydraulic radius (m) \( S \) = Bed slope

    Hydraulic Radius for Rectangular Section

    $$ R = \frac{A}{P} $$

    Where: \( P \) = Wetted perimeter (m)

    Wetted Perimeter for Rectangular Section

    $$ P = b + 2d $$

    Froude Number Check (For Flow Type)

    $$ Fr = \frac{V}{\sqrt{g d}} $$

    Where: \( g \) = 9.81 m/s² \( d \) = Depth of flow (m)

    Energy Loss through Escape Fall

    $$ h_L = K \times \frac{V^2}{2g} $$

    Where: \( h_L \) = Head loss (m) \( K \) = Loss coefficient (typically 0.5 to 1.0)

    Escape Structure Capacity Check

    Ensure: $$ Q_{escape} \geq Q_{maximum\ expected\ discharge} $$

    📖 Water Pipeline

    1️⃣ Discharge by Hazen-Williams Formula

    $$ Q = 0.278 \times C \times D^{2.63} \times S^{0.54} $$

    Where: \( Q \) = Discharge (m³/s) \( C \) = Hazen-Williams Coefficient \( D \) = Pipe diameter (m) \( S \) = Hydraulic gradient (head loss per unit length)

    2️⃣ Discharge by Darcy-Weisbach Formula

    $$ h_f = f \times \frac{L}{D} \times \frac{V^2}{2g} $$

    Where: \( h_f \) = Head loss (m) \( f \) = Friction factor \( L \) = Length of pipe (m) \( D \) = Pipe diameter (m) \( V \) = Flow velocity (m/s) \( g \) = 9.81 m/s²

    3️⃣ Flow Velocity

    $$ V = \frac{Q}{A} $$

    Where: \( A = \frac{\pi D^2}{4} \)

    4️⃣ Continuity Equation (Multiple Pipes)

    $$ Q_1 = Q_2 = Q_3 = \cdots $$

    5️⃣ Head Loss in Pipe Junction

    $$ h = K \times \frac{V^2}{2g} $$

    Where: \( K \) = Loss coefficient

    6️⃣ Pressure Head at Any Point

    $$ H = \frac{p}{\gamma} $$

    Where: \( p \) = Pressure (N/m²) \( \gamma \) = Unit weight of water (N/m³)

    7️⃣ Pipe Flow Reynolds Number

    $$ Re = \frac{V D}{\nu} $$

    Where: \( \nu \) = Kinematic viscosity (m²/s)

    8️⃣ Pump Power Required

    $$ P = \gamma \times Q \times H_p $$

    Where: \( H_p \) = Pump head (m)

    9️⃣ Economical Diameter of Pipe

    $$ D_e = \left(\frac{Q^2}{C}\right)^{1/5} $$

    Where: \( C \) = Coefficient dependent on material and cost factors

    📖 Sewage Pumping Station Layout Design

    1️⃣ Design Discharge

    $$ Q = \frac{P \times q}{1000 \times 24 \times 60 \times 60} $$

    Where: \( Q \) = Sewage flow (m³/s) \( P \) = Design population \( q \) = Per capita sewage flow (Lpcd)

    2️⃣ Wet Well Volume

    $$ V = Q \times t_s $$

    Where: \( V \) = Volume of wet well (m³) \( t_s \) = Retention time (sec) (usually 20 to 30 minutes)

    3️⃣ Area of Wet Well

    $$ A = \frac{V}{H} $$

    Where: \( A \) = Plan area (m²) \( H \) = Effective depth of wet well (m)

    4️⃣ Number of Pumps

    $$ N = n + 1 $$

    Where: \( n \) = Number of working pumps \( 1 \) = Standby pump (as per CPHEEO norms)

    5️⃣ Total Pumping Head

    $$ H_t = h_s + h_f + h_m $$

    Where: \( h_s \) = Static head (m) \( h_f \) = Friction losses (m) \( h_m \) = Minor losses (m)

    6️⃣ Pump Power Required

    $$ P = \frac{\gamma \times Q \times H_t}{\eta} $$

    Where: \( \gamma \) = Unit weight of sewage (N/m³) \( \eta \) = Pump efficiency (decimal)

    7️⃣ Minimum Rising Main Velocity

    Recommended: $$ 0.75\, \text{m/s} \leq V \leq 2.5\, \text{m/s} $$

    8️⃣ Diameter of Rising Main

    $$ D = \sqrt{\frac{4Q}{\pi V}} $$

    Where: \( D \) = Diameter (m) \( Q \) = Discharge (m³/s) \( V \) = Velocity (m/s)

    9️⃣ Detention Time Check

    $$ t_d = \frac{V}{Q} $$

    Where: \( t_d \) = Detention time (sec)

    🔟 Sump Bottom Level

    $$ \text{Sump Bottom RL} = \text{Inlet RL} - \text{Maximum Depth of Wet Well} $$

    📦 Construction Work Machinery

    1️⃣ Output of Power Shovel

    $$ Q = \frac{q \times N \times E}{T_c} $$

    Where:
    \( Q \) = Output per hour (m³/hr)
    \( q \) = Capacity per cycle (m³)
    \( N \) = Number of cycles per hour
    \( E \) = Job efficiency (decimal)
    \( T_c \) = Cycle time (minutes)

    2️⃣ Output of Excavator

    $$ Q = q \times n \times E $$

    \( q \) = Capacity per cycle (m³)
    \( n \) = Number of cycles per hour
    \( E \) = Efficiency (usually 0.8–0.9)

    3️⃣ Output of Dumper

    $$ Q = \frac{C \times N \times E}{T} $$

    \( C \) = Capacity per trip (m³)
    \( N \) = Number of trips per hour
    \( E \) = Efficiency
    \( T \) = Total cycle time per trip (hr)

    4️⃣ Output of Bulldozer

    $$ Q = \frac{S \times W \times D \times E}{T_c} $$

    \( S \) = Speed (m/min)
    \( W \) = Blade width (m)
    \( D \) = Depth of cut (m)
    \( E \) = Efficiency
    \( T_c \) = Cycle time (min)

    5️⃣ Roller Compaction Output

    $$ Q = \frac{W \times S \times C \times E}{T} $$

    \( W \) = Width of roller (m)
    \( S \) = Speed (m/min)
    \( C \) = Number of passes
    \( E \) = Efficiency
    \( T \) = Time (min)

    6️⃣ Tower Crane Lifting Capacity

    $$ C = \frac{M}{R} $$

    \( C \) = Lifting capacity (kNm)
    \( M \) = Moment (kNm)
    \( R \) = Radius (m)

    7️⃣ Concrete Mixer Output

    $$ Q = C_m \times N \times E $$

    \( C_m \) = Mixer drum capacity (m³)
    \( N \) = Number of batches per hour
    \( E \) = Efficiency (decimal)

    8️⃣ Truck Haul Capacity

    $$ Q = \frac{C_t \times N \times E}{T_c} $$

    \( C_t \) = Capacity per trip (m³)
    \( N \) = Trips per hour
    \( E \) = Efficiency
    \( T_c \) = Total cycle time per trip (min)

    📦 Quality Control Tests — Civil Engineering

    Compressive Strength of Concrete

    $$ f_c = \frac{P}{A} $$

    \( f_c \) = Compressive Strength (MPa)
    \( P \) = Ultimate Load (N)
    \( A \) = Area of specimen (mm²)

    Water-Cement Ratio

    $$ W/C = \frac{W}{C} $$

    \( W \) = Weight of water (kg)
    \( C \) = Weight of cement (kg)

    Slump Test

    $$ S = H_1 - H_2 $$

    \( S \) = Slump (mm)
    \( H_1 \) = Height of mould (mm)
    \( H_2 \) = Height of concrete after slump (mm)

    Aggregate Impact Value (AIV)

    $$ AIV = \frac{W_2}{W_1} \times 100 $$

    \( W_1 \) = Weight of oven-dry sample (g)
    \( W_2 \) = Weight of sample passing 2.36 mm sieve after impact (g)

    Fineness Modulus of Aggregates

    $$ FM = \frac{\text{Cumulative retained % on standard sieves}}{100} $$

    Bulking of Sand

    $$ \text{Bulking \%} = \frac{V_2 - V_1}{V_1} \times 100 $$

    \( V_1 \) = Volume of sand without water (ml)
    \( V_2 \) = Volume after water added (ml)

    Modulus of Elasticity of Concrete

    $$ E_c = 5000 \sqrt{f_{ck}} $$

    \( f_{ck} \) = Characteristic compressive strength (MPa)

    Specific Gravity of Cement

    $$ G = \frac{\frac{W_1}{W_1-W_2}}{\text{Volume of liquid displaced}} $$

    \( W_1 \) = Weight of cement + flask (g)
    \( W_2 \) = Weight of flask with kerosene and cement (g)

    Soundness of Cement (Le Chatelier Method)

    $$ \text{Expansion} = L_2 - L_1 $$

    \( L_1 \) = Distance between indicator points before boiling (mm)
    \( L_2 \) = Distance after boiling (mm)

    Flakiness Index

    $$ FI = \frac{W_f}{W_t} \times 100 $$

    \( W_f \) = Weight of flaky particles (g)
    \( W_t \) = Total weight of sample (g)

    Bitumen Testing

    Penetration Value

    Measured in tenths of mm under standard load, time & temperature.

    Softening Point (Ring and Ball Method)

    No formula — temperature at which bitumen softens under load.

    Ductility Test

    $$ D = \frac{L}{T} $$

    \( D \) = Ductility (cm)
    \( L \) = Distance at break (cm)
    \( T \) = Test length (normally 5 cm)

    Viscosity Test

    $$ \eta = \frac{W}{t} $$

    \( \eta \) = Viscosity
    \( W \) = Weight of flow (g)
    \( t \) = Time (sec)


    Soil Testing

    Water Content (Oven Drying Method)

    $$ w = \frac{W_w}{W_s} \times 100 $$

    \( W_w \) = Weight of water
    \( W_s \) = Weight of dry soil

    Dry Density

    $$ \rho_d = \frac{W_s}{V} $$

    \( W_s \) = Weight of dry soil (g)
    \( V \) = Volume of soil (cm³)

    Atterberg Limits

    • $$ LI = \frac{w - PL}{LL - PL} $$
    • $$ PI = LL - PL $$

    \( w \) = Natural moisture content
    \( LL \) = Liquid Limit
    \( PL \) = Plastic Limit

    Compaction (Proctor Test)

    $$ \gamma_d = \frac{W_s}{V} $$

    \( W_s \) = Dry weight of soil (g)
    \( V \) = Volume of mould (cm³)

    Steel testing

    Tensile Strength

    $$ f_t = \frac{P}{A} $$

    \( P \) = Load at fracture (N)
    \( A \) = Cross-sectional area (mm²)

    Elongation %

    $$ e = \frac{L_f - L_i}{L_i} \times 100 $$

    \( L_f \) = Final gauge length (mm)
    \( L_i \) = Initial gauge length (mm)

    Modulus of Elasticity

    $$ E = \frac{\sigma}{\epsilon} $$

    \( \sigma \) = Stress (MPa)
    \( \epsilon \) = Strain

    Concrete Workability

    Slump Test

    $$ S = H_1 - H_2 $$

    \( H_1 \) = Height of mould (mm)
    \( H_2 \) = Concrete height after slump (mm)

    Compaction Factor Test

    $$ CF = \frac{W_1}{W_2} $$

    \( W_1 \) = Weight of partially compacted concrete
    \( W_2 \) = Weight of fully compacted concrete


    Tests on Cement

    Specific Gravity (Le Chatelier)

    $$ G = \frac{\frac{W_1}{W_1-W_2}}{\text{Volume displaced}} $$

    Fineness (Blaine Method)

    $$ S = \frac{k}{t} $$

    \( k \) = Constant
    \( t \) = Time (s)

    Setting Time

    Initial and Final setting times recorded using Vicat apparatus (No formula)

    📦 Asphalt Mix

    Bulk Density of Mix

    $$ \rho_b = \frac{W_d}{V} $$

    Where:
    \( \rho_b \) = Bulk density (g/cm³ or kg/m³)
    \( W_d \) = Weight of dry specimen (g)
    \( V \) = Volume of specimen (cm³)

    Maximum Theoretical Density (MTD)

    Measured via pycnometer method — no formula, but recorded directly as per ASTM D2041.

    Air Voids (Va)

    $$ V_a = \frac{\rho_{MTD} - \rho_b}{\rho_{MTD}} \times 100 $$

    Where:
    \( \rho_{MTD} \) = Maximum Theoretical Density
    \( \rho_b \) = Bulk Density

    Voids in Mineral Aggregate (VMA)

    $$ VMA = \frac{V_v + V_s}{V_t} \times 100 $$

    Or simplified:
    $$ VMA = 100 - \frac{G_{mb} \times P_s}{G_{sb}} $$

    Where:
    \( G_{mb} \) = Bulk Specific Gravity of Mix
    \( P_s \) = % Aggregate by total weight
    \( G_{sb} \) = Bulk Specific Gravity of Aggregate

    Voids Filled with Bitumen (VFB)

    $$ VFB = \frac{VMA - V_a}{VMA} \times 100 $$

    Stability (Marshall Method)

    Maximum load carried by the mix specimen at 60°C until failure (in kN) — no formula.

    Flow Value

    Deformation (in mm) corresponding to maximum stability load under Marshall test.

    Optimum Bitumen Content (OBC)

    Selected corresponding to 4% Air Voids or best balanced values of Stability, VMA, and VFB based on plotted graphs — no direct formula, but determined graphically.

    ✅ Note: These QC formulas are as per MORTH & ASTM standards, suitable for PWD/IRC roadworks and NHAI projects.

    🧱 Cube Compressive Strength Test (As per IS 456:2000)

    Compressive Strength of Cube (fck)

    $$ f_{ck} = \frac{P}{A} $$

    Where:
    \( f_{ck} \) = Compressive strength (MPa)
    \( P \) = Load at failure (N)
    \( A \) = Loaded area of cube face (mm²)

    For standard 150 mm cube: \( A = 150 \times 150 = 22500 \ mm^2 \)

    📊 Average Compressive Strength of 3 Cubes

    $$ f_{avg} = \frac{f_1 + f_2 + f_3}{3} $$

    ✅ Acceptance Criteria (IS 456:2000, Clause 16 & Table 11)

    A concrete batch shall be accepted if:

    • The average strength of any 3 consecutive specimens ≥ specified characteristic strength.
    • No individual cube strength is less than:
      • \( f_{ck} - 3 \ MPa \) for M15, M20 grades.
      • 0.8 × \( f_{ck} \) for M25 and higher grades.

    🎯 Target Mean Strength (fcm)

    $$ f_{cm} = f_{ck} + k \times s $$

    Where:
    \( f_{ck} \) = Characteristic compressive strength (MPa)
    \( k \) = Statistical constant (1.65 for 5% probability of failure)
    \( s \) = Standard deviation (as per IS 10262:2019)

    📈 Coefficient of Variation (COV)

    $$ COV = \frac{s}{f_{avg}} \times 100 $$

    📝 Note: Minimum 3 cubes must be tested at each desired curing age (7, 14, and 28 days) for reliable quality assessment. Acceptance shall strictly conform to IS 456:2000, Table 11 requirements.

    Post a Comment

    0 Comments